Cargando…
Classification of optical coherence tomography images using a capsule network
BACKGROUND: Classification of optical coherence tomography (OCT) images can be achieved with high accuracy using classical convolution neural networks (CNN), a commonly used deep learning network for computer-aided diagnosis. Classical CNN has often been criticized for suppressing positional relatio...
Autores principales: | Tsuji, Takumasa, Hirose, Yuta, Fujimori, Kohei, Hirose, Takuya, Oyama, Asuka, Saikawa, Yusuke, Mimura, Tatsuya, Shiraishi, Kenshiro, Kobayashi, Takenori, Mizota, Atsushi, Kotoku, Jun’ichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082944/ https://www.ncbi.nlm.nih.gov/pubmed/32192460 http://dx.doi.org/10.1186/s12886-020-01382-4 |
Ejemplares similares
-
Image quality improvement in cone-beam CT using the super-resolution technique
por: Oyama, Asuka, et al.
Publicado: (2018) -
Hepatic tumor classification using texture and topology analysis of non-contrast-enhanced three-dimensional T1-weighted MR images with a radiomics approach
por: Oyama, Asuka, et al.
Publicado: (2019) -
Classification of chest X-ray images by incorporation of medical domain knowledge into operation branch networks
por: Tsuji, Takumasa, et al.
Publicado: (2023) -
Deep learning to predict elevated pulmonary artery pressure in patients with suspected pulmonary hypertension using standard chest X ray
por: Kusunose, Kenya, et al.
Publicado: (2020) -
Calculating and estimating second cancer risk from breast radiotherapy using Monte Carlo code with internal body scatter for each out‐of‐field organ
por: Takata, Takeshi, et al.
Publicado: (2020)