Cargando…
In vitro Activity of Apramycin Against Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae Isolates
OBJECTIVE: The emergence of carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKp) strains poses a significant public threat, and effective antimicrobial therapy is urgently needed. Recent studies indicated that apramycin is a potent antibiotic with good activity against a range of m...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083131/ https://www.ncbi.nlm.nih.gov/pubmed/32231657 http://dx.doi.org/10.3389/fmicb.2020.00425 |
Sumario: | OBJECTIVE: The emergence of carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKp) strains poses a significant public threat, and effective antimicrobial therapy is urgently needed. Recent studies indicated that apramycin is a potent antibiotic with good activity against a range of multi-drug resistant pathogens. In this study, we evaluated the in vitro activity of apramycin against clinical CR-hvKp along with carbapenem-resistant non-hvKp (CR-non-hvKp) isolates. METHODS: Broth microdilution method was used to evaluate the in vitro activities of apramycin, gentamicin, amikacin, imipenem, meropenem, doripenem, ertapenem and other comparator “last-resort” antimicrobial agents, including ceftazidime-avibactam, colistin and tigecycline, against eighty-four CR-hvKp and forty CR-non-hvKp isolates collected from three Chinese hospitals. Multilocus Sequence typing (MLST), molecular capsule typing (wzi sequencing) and antimicrobial resistance genes were examined by PCR and Sanger sequencing. Pulsed-field gel electrophoresis and next generation sequencing were conducted on selected isolates. RESULTS: Among the 84 CR-hvKp isolates, 97.6, 100, 97.6, and 100% were resistant to imipenem, meropenem, doripenem and ertapenem, respectively. Apramycin demonstrated an MIC(50)/MIC(90) of 4/8 μg/mL against the CR-hvKp isolates. In contrast, the MIC(50)/MIC(90) for amikacin and gentamicin were >64/>64 μg/mL. All CR-hvKp isolates were susceptible to ceftazidime-avibactam, colistin and tigecycline with the MIC(50)/MIC(90) values of 0.5/1, 0.25/0.5, 1/1, respectively. For CR-non-hvKp, The MIC(50/90) values for apramycin, gentamicin and amikacin were 2/8, >64/>64, and >64/>64 μg/mL, respectively. There were no statistical significance in the resistance rates of antimicrobial agents between CR-hvKp and CR-non-hvKp groups (p > 0.05). Genetic analysis revealed that all CR-hvKp isolates harbored bla(KPC–2), and 94% (n = 79) belong to the ST11 high-risk clone. 93.6% (44/47) of amikacin or gentamicin resistant strains carried 16S rRNA methyltransferases gene rmtB. CONCLUSION: Apramycin demonstrated potent in vitro activity against CR-hvKp isolates, including those were resistant to amikacin or gentamicin. Further studies are needed to evaluate the applicability of apramycin to be used as a therapeutic antibiotic against CR-hvKp infections. |
---|