Cargando…
Stock price prediction using principal components
The literature provides strong evidence that stock price values can be predicted from past price data. Principal component analysis (PCA) identifies a small number of principle components that explain most of the variation in a data set. This method is often used for dimensionality reduction and ana...
Autores principales: | Ghorbani, Mahsa, Chong, Edwin K. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083277/ https://www.ncbi.nlm.nih.gov/pubmed/32196528 http://dx.doi.org/10.1371/journal.pone.0230124 |
Ejemplares similares
-
Trading Network Predicts Stock Price
por: Sun, Xiao-Qian, et al.
Publicado: (2014) -
Clustering-enhanced stock price prediction using deep learning
por: Li, Man, et al.
Publicado: (2022) -
Fear and stock price bubbles
por: Lehnert, Thorsten
Publicado: (2020) -
Using Kernel Method to Include Firm Correlation for Stock Price Prediction
por: Xu, Hang
Publicado: (2022) -
Market Confidence Predicts Stock Price: Beyond Supply and Demand
por: Sun, Xiao-Qian, et al.
Publicado: (2016)