Cargando…
Estimation of neural network model parameters from local field potentials (LFPs)
Most modeling in systems neuroscience has been descriptive where neural representations such as ‘receptive fields’, have been found by statistically correlating neural activity to sensory input. In the traditional physics approach to modelling, hypotheses are represented by mechanistic models based...
Autores principales: | Skaar, Jan-Eirik W., Stasik, Alexander J., Hagen, Espen, Ness, Torbjørn V., Einevoll, Gaute T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083334/ https://www.ncbi.nlm.nih.gov/pubmed/32155141 http://dx.doi.org/10.1371/journal.pcbi.1007725 |
Ejemplares similares
-
Hybrid scheme for modeling LFPs from spiking cortical network models
por: Hagen, Espen, et al.
Publicado: (2013) -
Metamodelling of a two-population spiking neural network
por: Skaar, Jan-Eirik W., et al.
Publicado: (2023) -
Multimodal Modeling of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0
por: Hagen, Espen, et al.
Publicado: (2018) -
Simplified model of the frequency dependence of the LFP’s spatial reach
por: Łęski, Szymon, et al.
Publicado: (2012) -
RippleNet: a Recurrent Neural Network for Sharp Wave Ripple (SPW-R) Detection
por: Hagen, Espen, et al.
Publicado: (2021)