Cargando…

Surface-state Coulomb repulsion accelerates a metal-insulator transition in topological semimetal nanofilms

The emergence of quantization at the nanoscale, the quantum size effect (QSE), allows flexible control of matter and is a rich source of advanced functionalities. A QSE-induced transition into an insulating phase in semimetallic nanofilms was predicted for bismuth a half-century ago and has regained...

Descripción completa

Detalles Bibliográficos
Autores principales: Ito, S., Arita, M., Haruyama, J., Feng, B., Chen, W.-C., Namatame, H., Taniguchi, M., Cheng, C.-M., Bian, G., Tang, S.-J., Chiang, T.-C., Sugino, O., Komori, F., Matsuda, I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083614/
https://www.ncbi.nlm.nih.gov/pubmed/32219169
http://dx.doi.org/10.1126/sciadv.aaz5015
_version_ 1783508559619686400
author Ito, S.
Arita, M.
Haruyama, J.
Feng, B.
Chen, W.-C.
Namatame, H.
Taniguchi, M.
Cheng, C.-M.
Bian, G.
Tang, S.-J.
Chiang, T.-C.
Sugino, O.
Komori, F.
Matsuda, I.
author_facet Ito, S.
Arita, M.
Haruyama, J.
Feng, B.
Chen, W.-C.
Namatame, H.
Taniguchi, M.
Cheng, C.-M.
Bian, G.
Tang, S.-J.
Chiang, T.-C.
Sugino, O.
Komori, F.
Matsuda, I.
author_sort Ito, S.
collection PubMed
description The emergence of quantization at the nanoscale, the quantum size effect (QSE), allows flexible control of matter and is a rich source of advanced functionalities. A QSE-induced transition into an insulating phase in semimetallic nanofilms was predicted for bismuth a half-century ago and has regained new interest with regard to its surface states exhibiting nontrivial electronic topology. Here, we reveal an unexpected mechanism of the transition by high-resolution angle-resolved photoelectron spectroscopy combined with theoretical calculations. Anomalous evolution and degeneracy of quantized energy levels indicate that increased Coulomb repulsion from the surface states deforms a quantum confinement potential with decreasing thickness. The potential deformation strongly modulates spatial distributions of quantized wave functions, which leads to acceleration of the transition beyond the original QSE picture. This discovery establishes a complete picture of the long-discussed transition and highlights a new class of size effects dominating nanoscale transport in systems with metallic surface states.
format Online
Article
Text
id pubmed-7083614
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-70836142020-03-26 Surface-state Coulomb repulsion accelerates a metal-insulator transition in topological semimetal nanofilms Ito, S. Arita, M. Haruyama, J. Feng, B. Chen, W.-C. Namatame, H. Taniguchi, M. Cheng, C.-M. Bian, G. Tang, S.-J. Chiang, T.-C. Sugino, O. Komori, F. Matsuda, I. Sci Adv Research Articles The emergence of quantization at the nanoscale, the quantum size effect (QSE), allows flexible control of matter and is a rich source of advanced functionalities. A QSE-induced transition into an insulating phase in semimetallic nanofilms was predicted for bismuth a half-century ago and has regained new interest with regard to its surface states exhibiting nontrivial electronic topology. Here, we reveal an unexpected mechanism of the transition by high-resolution angle-resolved photoelectron spectroscopy combined with theoretical calculations. Anomalous evolution and degeneracy of quantized energy levels indicate that increased Coulomb repulsion from the surface states deforms a quantum confinement potential with decreasing thickness. The potential deformation strongly modulates spatial distributions of quantized wave functions, which leads to acceleration of the transition beyond the original QSE picture. This discovery establishes a complete picture of the long-discussed transition and highlights a new class of size effects dominating nanoscale transport in systems with metallic surface states. American Association for the Advancement of Science 2020-03-20 /pmc/articles/PMC7083614/ /pubmed/32219169 http://dx.doi.org/10.1126/sciadv.aaz5015 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Ito, S.
Arita, M.
Haruyama, J.
Feng, B.
Chen, W.-C.
Namatame, H.
Taniguchi, M.
Cheng, C.-M.
Bian, G.
Tang, S.-J.
Chiang, T.-C.
Sugino, O.
Komori, F.
Matsuda, I.
Surface-state Coulomb repulsion accelerates a metal-insulator transition in topological semimetal nanofilms
title Surface-state Coulomb repulsion accelerates a metal-insulator transition in topological semimetal nanofilms
title_full Surface-state Coulomb repulsion accelerates a metal-insulator transition in topological semimetal nanofilms
title_fullStr Surface-state Coulomb repulsion accelerates a metal-insulator transition in topological semimetal nanofilms
title_full_unstemmed Surface-state Coulomb repulsion accelerates a metal-insulator transition in topological semimetal nanofilms
title_short Surface-state Coulomb repulsion accelerates a metal-insulator transition in topological semimetal nanofilms
title_sort surface-state coulomb repulsion accelerates a metal-insulator transition in topological semimetal nanofilms
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083614/
https://www.ncbi.nlm.nih.gov/pubmed/32219169
http://dx.doi.org/10.1126/sciadv.aaz5015
work_keys_str_mv AT itos surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT aritam surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT haruyamaj surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT fengb surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT chenwc surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT namatameh surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT taniguchim surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT chengcm surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT biang surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT tangsj surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT chiangtc surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT suginoo surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT komorif surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms
AT matsudai surfacestatecoulombrepulsionacceleratesametalinsulatortransitionintopologicalsemimetalnanofilms