Cargando…

Metabolic reprogram associated with epithelial-mesenchymal transition in tumor progression and metastasis

Epithelial-mesenchymal Transition (EMT) is a de-differentiation program that imparts tumor cells with the phenotypic and cellular plasticity required for drug resistance, metastasis, and recurrence. This dynamic and reversible events is governed by a network of EMT-transcription factors (EMT-TFs) th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yifan, Dong, Chenfang, Zhou, Binhua P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Chongqing Medical University 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083713/
https://www.ncbi.nlm.nih.gov/pubmed/32215287
http://dx.doi.org/10.1016/j.gendis.2019.09.012
Descripción
Sumario:Epithelial-mesenchymal Transition (EMT) is a de-differentiation program that imparts tumor cells with the phenotypic and cellular plasticity required for drug resistance, metastasis, and recurrence. This dynamic and reversible events is governed by a network of EMT-transcription factors (EMT-TFs) through epigenetic regulation. Many chromatin modifying-enzymes utilize metabolic intermediates as cofactors or substrates; this suggests that EMT is subjected to the metabolic regulation. Conversely, EMT rewires metabolic program to accommodate cellular changes during EMT. Here we summarize the latest findings regarding the epigenetic regulation of EMT, and discuss the mutual interactions among metabolism, epigenetic regulation, and EMT. Finally, we provide perspectives of how this interplay contributes to cellular plasticity, which may result in the clinical manifestation of tumor heterogeneity.