Cargando…
Machine Learning and Feature Selection Applied to SEER Data to Reliably Assess Thyroid Cancer Prognosis
Utilizing historical clinical datasets to guide future treatment choices is beneficial for patients and physicians. Machine learning and feature selection algorithms (namely, Fisher’s discriminant ratio, Kruskal-Wallis’ analysis, and Relief-F) have been combined in this research to analyse a SEER da...
Autores principales: | Mourad, Moustafa, Moubayed, Sami, Dezube, Aaron, Mourad, Youssef, Park, Kyle, Torreblanca-Zanca, Albertina, Torrecilla, José S., Cancilla, John C., Wang, Jiwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083829/ https://www.ncbi.nlm.nih.gov/pubmed/32198433 http://dx.doi.org/10.1038/s41598-020-62023-w |
Ejemplares similares
-
The Clinical Understaging of Recurrent Glottic Carcinoma after Radiation Failure
por: Mourad, Moustafa, et al.
Publicado: (2016) -
Incidence and prognosis of thyroid cancer in children: based on the SEER database
por: Zhang, Bing, et al.
Publicado: (2022) -
Editorial: Artificial Intelligence in Chemistry
por: Cancilla, John C., et al.
Publicado: (2020) -
Value of thyroid cancer history in the prognosis of pancreatic cancer: a SEER population-based study
por: He, Jun, et al.
Publicado: (2023) -
Unanticipated prognosis of differential thyroid cancer patients with T0 stage: analysis of the SEER database 2004-2013
por: Liu, Chunping, et al.
Publicado: (2017)