Cargando…
Fungal secretome profile categorization of CAZymes by function and family corresponds to fungal phylogeny and taxonomy: Example Aspergillus and Penicillium
Fungi secrete an array of carbohydrate-active enzymes (CAZymes), reflecting their specialized habitat-related substrate utilization. Despite its importance for fitness, enzyme secretome composition is not used in fungal classification, since an overarching relationship between CAZyme profiles and fu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083838/ https://www.ncbi.nlm.nih.gov/pubmed/32198418 http://dx.doi.org/10.1038/s41598-020-61907-1 |
Sumario: | Fungi secrete an array of carbohydrate-active enzymes (CAZymes), reflecting their specialized habitat-related substrate utilization. Despite its importance for fitness, enzyme secretome composition is not used in fungal classification, since an overarching relationship between CAZyme profiles and fungal phylogeny/taxonomy has not been established. For 465 Ascomycota and Basidiomycota genomes, we predicted CAZyme-secretomes, using a new peptide-based annotation method, Conserved-Unique-Peptide-Patterns, enabling functional prediction directly from sequence. We categorized each enzyme according to CAZy-family and predicted molecular function, hereby obtaining a list of “EC-Function;CAZy-Family” observations. These “Function;Family”-based secretome profiles were compared, using a Yule-dissimilarity scoring algorithm, giving equal consideration to the presence and absence of individual observations. Assessment of “Function;Family” enzyme profile relatedness (EPR) across 465 genomes partitioned Ascomycota from Basidiomycota placing Aspergillus and Penicillium among the Ascomycota. Analogously, we calculated CAZyme “Function;Family” profile-similarities among 95 Aspergillus and Penicillium species to form an alignment-free, EPR-based dendrogram. This revealed a stunning congruence between EPR categorization and phylogenetic/taxonomic grouping of the Aspergilli and Penicillia. Our analysis suggests EPR grouping of fungi to be defined both by “shared presence“ and “shared absence” of CAZyme “Function;Family” observations. This finding indicates that CAZymes-secretome evolution is an integral part of fungal speciation, supporting integration of cladogenesis and anagenesis. |
---|