Cargando…
Improved Prediction of Surgical Resectability in Patients with Glioblastoma using an Artificial Neural Network
In managing a patient with glioblastoma (GBM), a surgeon must carefully consider whether sufficient tumour can be removed so that the patient can enjoy the benefits of decompression and cytoreduction, without impacting on the patient’s neurological status. In a previous study we identified the five...
Autores principales: | Marcus, Adam P., Marcus, Hani J., Camp, Sophie J., Nandi, Dipankar, Kitchen, Neil, Thorne, Lewis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083861/ https://www.ncbi.nlm.nih.gov/pubmed/32198487 http://dx.doi.org/10.1038/s41598-020-62160-2 |
Ejemplares similares
-
Predicting surgical outcome in patients with glioblastoma multiforme using pre-operative magnetic resonance imaging: development and preliminary validation of a grading system
por: Marcus, Hani J., et al.
Publicado: (2017) -
Improved prediction of postoperative pediatric cerebellar mutism syndrome using an artificial neural network
por: Sidpra, Jai, et al.
Publicado: (2022) -
Editorial: Investigations into the potential benefits of artificial intelligence and deep learning to surgical oncologists
por: Williams, Simon C., et al.
Publicado: (2023) -
Regulatory approval of new medical devices: cross sectional study
por: Marcus, Hani J, et al.
Publicado: (2016) -
FUTURE-GB: functional and ultrasound-guided resection of glioblastoma – a two-stage randomised control trial
por: Plaha, Puneet, et al.
Publicado: (2022)