Cargando…
Machine learning for cluster analysis of localization microscopy data
Quantifying the extent to which points are clustered in single-molecule localization microscopy data is vital to understanding the spatial relationships between molecules in the underlying sample. Many existing computational approaches are limited in their ability to process large-scale data sets, t...
Autores principales: | Williamson, David J., Burn, Garth L., Simoncelli, Sabrina, Griffié, Juliette, Peters, Ruby, Davis, Daniel M., Owen, Dylan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083906/ https://www.ncbi.nlm.nih.gov/pubmed/32198352 http://dx.doi.org/10.1038/s41467-020-15293-x |
Ejemplares similares
-
Quantitative fibre analysis of single-molecule localization microscopy data
por: Peters, Ruby, et al.
Publicado: (2018) -
3D Bayesian cluster analysis of super-resolution data reveals LAT recruitment to the T cell synapse
por: Griffié, Juliette, et al.
Publicado: (2017) -
An agent-based model of molecular aggregation at the cell membrane
por: Griffié, Juliette, et al.
Publicado: (2020) -
Event-driven acquisition for content-enriched microscopy
por: Mahecic, Dora, et al.
Publicado: (2022) -
Information-rich localization microscopy through machine learning
por: Kim, Taehwan, et al.
Publicado: (2019)