Cargando…
Interplay of negative electronic compressibility and capacitance enhancement in lightly-doped metal oxide Bi(0.95)La(0.05)FeO(3) by quantum capacitance model
Light-sensitive capacitance variation of Bi(0.95)La(0.05)FeO(3) (BLFO) ceramics has been studied under violet to UV irradiation. The reversible capacitance enhancement up to 21% under 405 nm violet laser irradiation has been observed, suggesting a possible degree of freedom to dynamically control th...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083945/ https://www.ncbi.nlm.nih.gov/pubmed/32198381 http://dx.doi.org/10.1038/s41598-020-61859-6 |
_version_ | 1783508629641494528 |
---|---|
author | Nathabumroong, S. Eknapakul, T. Jaiban, P. Yotburut, B. Siriroj, S. Saisopa, T. Mo, S.-K. Supruangnet, R. Nakajima, H. Yimnirun, R. Maensiri, S. Meevasana, W. |
author_facet | Nathabumroong, S. Eknapakul, T. Jaiban, P. Yotburut, B. Siriroj, S. Saisopa, T. Mo, S.-K. Supruangnet, R. Nakajima, H. Yimnirun, R. Maensiri, S. Meevasana, W. |
author_sort | Nathabumroong, S. |
collection | PubMed |
description | Light-sensitive capacitance variation of Bi(0.95)La(0.05)FeO(3) (BLFO) ceramics has been studied under violet to UV irradiation. The reversible capacitance enhancement up to 21% under 405 nm violet laser irradiation has been observed, suggesting a possible degree of freedom to dynamically control this in high dielectric materials for light-sensitive capacitance applications. By using ultraviolet photoemission spectroscopy (UPS), we show here that exposure of BLFO surfaces to UV light induces a counterintuitive shift of the O(2p) valence state to lower binding energy of up to 243 meV which is a direct signature of negative electronic compressibility (NEC). A decrease of BLFO electrical resistance agrees strongly with the UPS data suggesting the creation of a thin conductive layer on its insulating bulk under light irradiation. By exploiting the quantum capacitance model, we find that the negative quantum capacitance due to this NEC effect plays an important role in this capacitance enhancement |
format | Online Article Text |
id | pubmed-7083945 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-70839452020-03-26 Interplay of negative electronic compressibility and capacitance enhancement in lightly-doped metal oxide Bi(0.95)La(0.05)FeO(3) by quantum capacitance model Nathabumroong, S. Eknapakul, T. Jaiban, P. Yotburut, B. Siriroj, S. Saisopa, T. Mo, S.-K. Supruangnet, R. Nakajima, H. Yimnirun, R. Maensiri, S. Meevasana, W. Sci Rep Article Light-sensitive capacitance variation of Bi(0.95)La(0.05)FeO(3) (BLFO) ceramics has been studied under violet to UV irradiation. The reversible capacitance enhancement up to 21% under 405 nm violet laser irradiation has been observed, suggesting a possible degree of freedom to dynamically control this in high dielectric materials for light-sensitive capacitance applications. By using ultraviolet photoemission spectroscopy (UPS), we show here that exposure of BLFO surfaces to UV light induces a counterintuitive shift of the O(2p) valence state to lower binding energy of up to 243 meV which is a direct signature of negative electronic compressibility (NEC). A decrease of BLFO electrical resistance agrees strongly with the UPS data suggesting the creation of a thin conductive layer on its insulating bulk under light irradiation. By exploiting the quantum capacitance model, we find that the negative quantum capacitance due to this NEC effect plays an important role in this capacitance enhancement Nature Publishing Group UK 2020-03-20 /pmc/articles/PMC7083945/ /pubmed/32198381 http://dx.doi.org/10.1038/s41598-020-61859-6 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Nathabumroong, S. Eknapakul, T. Jaiban, P. Yotburut, B. Siriroj, S. Saisopa, T. Mo, S.-K. Supruangnet, R. Nakajima, H. Yimnirun, R. Maensiri, S. Meevasana, W. Interplay of negative electronic compressibility and capacitance enhancement in lightly-doped metal oxide Bi(0.95)La(0.05)FeO(3) by quantum capacitance model |
title | Interplay of negative electronic compressibility and capacitance enhancement in lightly-doped metal oxide Bi(0.95)La(0.05)FeO(3) by quantum capacitance model |
title_full | Interplay of negative electronic compressibility and capacitance enhancement in lightly-doped metal oxide Bi(0.95)La(0.05)FeO(3) by quantum capacitance model |
title_fullStr | Interplay of negative electronic compressibility and capacitance enhancement in lightly-doped metal oxide Bi(0.95)La(0.05)FeO(3) by quantum capacitance model |
title_full_unstemmed | Interplay of negative electronic compressibility and capacitance enhancement in lightly-doped metal oxide Bi(0.95)La(0.05)FeO(3) by quantum capacitance model |
title_short | Interplay of negative electronic compressibility and capacitance enhancement in lightly-doped metal oxide Bi(0.95)La(0.05)FeO(3) by quantum capacitance model |
title_sort | interplay of negative electronic compressibility and capacitance enhancement in lightly-doped metal oxide bi(0.95)la(0.05)feo(3) by quantum capacitance model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083945/ https://www.ncbi.nlm.nih.gov/pubmed/32198381 http://dx.doi.org/10.1038/s41598-020-61859-6 |
work_keys_str_mv | AT nathabumroongs interplayofnegativeelectroniccompressibilityandcapacitanceenhancementinlightlydopedmetaloxidebi095la005feo3byquantumcapacitancemodel AT eknapakult interplayofnegativeelectroniccompressibilityandcapacitanceenhancementinlightlydopedmetaloxidebi095la005feo3byquantumcapacitancemodel AT jaibanp interplayofnegativeelectroniccompressibilityandcapacitanceenhancementinlightlydopedmetaloxidebi095la005feo3byquantumcapacitancemodel AT yotburutb interplayofnegativeelectroniccompressibilityandcapacitanceenhancementinlightlydopedmetaloxidebi095la005feo3byquantumcapacitancemodel AT sirirojs interplayofnegativeelectroniccompressibilityandcapacitanceenhancementinlightlydopedmetaloxidebi095la005feo3byquantumcapacitancemodel AT saisopat interplayofnegativeelectroniccompressibilityandcapacitanceenhancementinlightlydopedmetaloxidebi095la005feo3byquantumcapacitancemodel AT mosk interplayofnegativeelectroniccompressibilityandcapacitanceenhancementinlightlydopedmetaloxidebi095la005feo3byquantumcapacitancemodel AT supruangnetr interplayofnegativeelectroniccompressibilityandcapacitanceenhancementinlightlydopedmetaloxidebi095la005feo3byquantumcapacitancemodel AT nakajimah interplayofnegativeelectroniccompressibilityandcapacitanceenhancementinlightlydopedmetaloxidebi095la005feo3byquantumcapacitancemodel AT yimnirunr interplayofnegativeelectroniccompressibilityandcapacitanceenhancementinlightlydopedmetaloxidebi095la005feo3byquantumcapacitancemodel AT maensiris interplayofnegativeelectroniccompressibilityandcapacitanceenhancementinlightlydopedmetaloxidebi095la005feo3byquantumcapacitancemodel AT meevasanaw interplayofnegativeelectroniccompressibilityandcapacitanceenhancementinlightlydopedmetaloxidebi095la005feo3byquantumcapacitancemodel |