Cargando…

Manganese(II) Oxidizing Bacteria as Whole-Cell Catalyst for β-Keto Ester Oxidation

Manganese oxidizing bacteria can produce biogenic manganese oxides (BMO) on their cell surface and have been applied in the fields of agriculture, bioremediation, and drinking water treatment to remove toxic contaminants based on their remarkable chemical reactivity. Herein, we report for the first...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Juan, Guo, Huan, Liu, Jin, Zhong, Fangrui, Wu, Yuzhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084315/
https://www.ncbi.nlm.nih.gov/pubmed/32131550
http://dx.doi.org/10.3390/ijms21051709
Descripción
Sumario:Manganese oxidizing bacteria can produce biogenic manganese oxides (BMO) on their cell surface and have been applied in the fields of agriculture, bioremediation, and drinking water treatment to remove toxic contaminants based on their remarkable chemical reactivity. Herein, we report for the first time the synthetic application of the manganese oxidizing bacteria, Pseudomonas putida MnB1 as a whole-cell biocatalyst for the effective oxidation of β-keto ester with excellent yield. Differing from known chemical protocols toward this transformation that generally necessitate the use of organic solvents, stoichiometric oxygenating agents and complex chemical catalysts, our strategy can accomplish it simply under aqueous and mild conditions with higher efficiency than that provided by chemical manganese oxides. Moreover, the live MnB1 bacteria are capable of continuous catalysis for this C-O bond forming reaction for several cycles and remain proliferating, highlighting the favorable merits of this novel protocol for sustainable chemistry and green synthesis.