Cargando…
Physcion-Matured Dendritic Cells Induce the Differentiation of Th1 Cells
In addition to their use as colorants, anthraquinone derivatives have numerous medical applications, for example, as antibacterial and antiinflammatory agents. We confirmed that physcion (an anthraquinone derivative) induces TNF-alpha production by macrophages and increased the expressions of surfac...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084398/ https://www.ncbi.nlm.nih.gov/pubmed/32143368 http://dx.doi.org/10.3390/ijms21051753 |
_version_ | 1783508712469561344 |
---|---|
author | Hwang, Yun-Ho Kim, Su-Jin Yee, Sung-Tae |
author_facet | Hwang, Yun-Ho Kim, Su-Jin Yee, Sung-Tae |
author_sort | Hwang, Yun-Ho |
collection | PubMed |
description | In addition to their use as colorants, anthraquinone derivatives have numerous medical applications, for example, as antibacterial and antiinflammatory agents. We confirmed that physcion (an anthraquinone derivative) induces TNF-alpha production by macrophages and increased the expressions of surface molecules (CD40, CD80, and CD86) and major histocompatibility complex (MHC) II. Based on these results, we hypothesized that physcion might induce the maturation of dendritic cells (DCs) to antigen-presenting cells (APCs), and decided to conduct in vitro experiments using bone-marrow-derived DCs (BMDCs). Physcion was not toxic to DCs and increased the expression of surface molecules (e.g., CD40, CD80, CD86, and MHC II) and the production of cytokines (e.g., IL-12p70, IL-1beta, IL-6, and TNF-alpha), but not of IL-10. To confirm that DCs matured by physcion induce T-cell-immune responses, naive CD4(+) T cells were treated with physcion-treated DCs or their supernatants. Physcion induced the maturation of DCs, which promoted the polarization of Th1 cells. Our results show physcion-induced DC maturation via TLR4, and that mature DCs promote the differentiation of Th1 cells without affecting the differentiation of Th2 cells. These findings show that physcion has potential use as a treatment for inflammatory diseases associated with Th1/Th2 cell imbalance. |
format | Online Article Text |
id | pubmed-7084398 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70843982020-03-24 Physcion-Matured Dendritic Cells Induce the Differentiation of Th1 Cells Hwang, Yun-Ho Kim, Su-Jin Yee, Sung-Tae Int J Mol Sci Article In addition to their use as colorants, anthraquinone derivatives have numerous medical applications, for example, as antibacterial and antiinflammatory agents. We confirmed that physcion (an anthraquinone derivative) induces TNF-alpha production by macrophages and increased the expressions of surface molecules (CD40, CD80, and CD86) and major histocompatibility complex (MHC) II. Based on these results, we hypothesized that physcion might induce the maturation of dendritic cells (DCs) to antigen-presenting cells (APCs), and decided to conduct in vitro experiments using bone-marrow-derived DCs (BMDCs). Physcion was not toxic to DCs and increased the expression of surface molecules (e.g., CD40, CD80, CD86, and MHC II) and the production of cytokines (e.g., IL-12p70, IL-1beta, IL-6, and TNF-alpha), but not of IL-10. To confirm that DCs matured by physcion induce T-cell-immune responses, naive CD4(+) T cells were treated with physcion-treated DCs or their supernatants. Physcion induced the maturation of DCs, which promoted the polarization of Th1 cells. Our results show physcion-induced DC maturation via TLR4, and that mature DCs promote the differentiation of Th1 cells without affecting the differentiation of Th2 cells. These findings show that physcion has potential use as a treatment for inflammatory diseases associated with Th1/Th2 cell imbalance. MDPI 2020-03-04 /pmc/articles/PMC7084398/ /pubmed/32143368 http://dx.doi.org/10.3390/ijms21051753 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hwang, Yun-Ho Kim, Su-Jin Yee, Sung-Tae Physcion-Matured Dendritic Cells Induce the Differentiation of Th1 Cells |
title | Physcion-Matured Dendritic Cells Induce the Differentiation of Th1 Cells |
title_full | Physcion-Matured Dendritic Cells Induce the Differentiation of Th1 Cells |
title_fullStr | Physcion-Matured Dendritic Cells Induce the Differentiation of Th1 Cells |
title_full_unstemmed | Physcion-Matured Dendritic Cells Induce the Differentiation of Th1 Cells |
title_short | Physcion-Matured Dendritic Cells Induce the Differentiation of Th1 Cells |
title_sort | physcion-matured dendritic cells induce the differentiation of th1 cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084398/ https://www.ncbi.nlm.nih.gov/pubmed/32143368 http://dx.doi.org/10.3390/ijms21051753 |
work_keys_str_mv | AT hwangyunho physcionmatureddendriticcellsinducethedifferentiationofth1cells AT kimsujin physcionmatureddendriticcellsinducethedifferentiationofth1cells AT yeesungtae physcionmatureddendriticcellsinducethedifferentiationofth1cells |