Cargando…

Impact of Fly Ash Fractionation on the Zeolitization Process

Coal combustion product in the form of fly ash has been sieved and successfully utilised as a main substrate and a carrier of silicon and aluminium in a set of hydrothermal syntheses of zeolites. The final product was abundant in zeolite X phase (Faujasite framework). Raw fly ash as well as its deri...

Descripción completa

Detalles Bibliográficos
Autores principales: Czarna-Juszkiewicz, Dorota, Kunecki, Piotr, Panek, Rafał, Madej, Jarosław, Wdowin, Magdalena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084421/
https://www.ncbi.nlm.nih.gov/pubmed/32106436
http://dx.doi.org/10.3390/ma13051035
Descripción
Sumario:Coal combustion product in the form of fly ash has been sieved and successfully utilised as a main substrate and a carrier of silicon and aluminium in a set of hydrothermal syntheses of zeolites. The final product was abundant in zeolite X phase (Faujasite framework). Raw fly ash as well as its derivatives, after being sieved (fractions: ≤ 63, 63–125, 125–180 and ≥ 180 µm), and the obtained zeolite materials were subjected to mineralogical characterisation using powder X-ray diffraction, energy-dispersive X-ray fluorescence, laser diffraction-based particle size analysis and scanning electron microscopy. The influence of fraction separation on the zeolitization process under hydrothermal synthesis was investigated. Analyses performed on the derived zeolite X samples revealed a meaningful impact of the given fly ash fraction on synthesis efficiency, chemistry, quality as well as physicochemical properties, while favouring a given morphological form of zeolite crystals. The obtained zeolites possess great potential for use in many areas of industry and environmental protection or engineering.