Cargando…
Non-Tuned Machine Learning Approach for Predicting the Compressive Strength of High-Performance Concrete
Compressive strength is considered as one of the most important parameters in concrete design. Time and cost can be reduced if the compressive strength of concrete is accurately estimated. In this paper, a new prediction model for compressive strength of high-performance concrete (HPC) was developed...
Autores principales: | Al-Shamiri, Abobakr Khalil, Yuan, Tian-Feng, Kim, Joong Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084592/ https://www.ncbi.nlm.nih.gov/pubmed/32106394 http://dx.doi.org/10.3390/ma13051023 |
Ejemplares similares
-
Learned Prediction of Compressive Strength of GGBFS Concrete Using Hybrid Artificial Neural Network Models
por: Han, In-Ji, et al.
Publicado: (2019) -
Compressive Strength Evaluation of Ultra-High-Strength Concrete by Machine Learning
por: Shen, Zhongjie, et al.
Publicado: (2022) -
Prediction of Compressive Strength of Partially Saturated Concrete Using Machine Learning Methods
por: Candelaria, Ma. Doreen Esplana, et al.
Publicado: (2022) -
Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
por: Xu, Yue, et al.
Publicado: (2021) -
Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches
por: Ullah, Haji Sami, et al.
Publicado: (2022)