Cargando…
Altered Growth and Envelope Properties of Polylysogens Containing Bacteriophage Lambda N(−)cI(−) Prophages
The bacterial virus lambda (λ) is a temperate bacteriophage that can lysogenize host Escherichia coli (E. coli) cells. Lysogeny requires λ repressor, the cI gene product, which shuts off transcription of the phage genome. The λ N protein, in contrast, is a transcriptional antiterminator, required fo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084815/ https://www.ncbi.nlm.nih.gov/pubmed/32121308 http://dx.doi.org/10.3390/ijms21051667 |
_version_ | 1783508809631662080 |
---|---|
author | Barik, Sailen Mandal, Nitai C. |
author_facet | Barik, Sailen Mandal, Nitai C. |
author_sort | Barik, Sailen |
collection | PubMed |
description | The bacterial virus lambda (λ) is a temperate bacteriophage that can lysogenize host Escherichia coli (E. coli) cells. Lysogeny requires λ repressor, the cI gene product, which shuts off transcription of the phage genome. The λ N protein, in contrast, is a transcriptional antiterminator, required for expression of the terminator-distal genes, and thus, λ N mutants are growth-defective. When E. coli is infected with a λ double mutant that is defective in both N and cI (i.e., λN(-)cI(-)), at high multiplicities of 50 or more, it forms polylysogens that contain 20–30 copies of the λN(-)cI(-) genome integrated in the E. coli chromosome. Early studies revealed that the polylysogens underwent “conversion” to long filamentous cells that form tiny colonies on agar. Here, we report a large set of altered biochemical properties associated with this conversion, documenting an overall degeneration of the bacterial envelope. These properties reverted back to those of nonlysogenic E. coli as the metastable polylysogen spontaneously lost the λN(-)cI(-) genomes, suggesting that conversion is a direct result of the multiple copies of the prophage. Preliminary attempts to identify lambda genes that may be responsible for conversion ruled out several candidates, implicating a potentially novel lambda function that awaits further studies. |
format | Online Article Text |
id | pubmed-7084815 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70848152020-03-23 Altered Growth and Envelope Properties of Polylysogens Containing Bacteriophage Lambda N(−)cI(−) Prophages Barik, Sailen Mandal, Nitai C. Int J Mol Sci Article The bacterial virus lambda (λ) is a temperate bacteriophage that can lysogenize host Escherichia coli (E. coli) cells. Lysogeny requires λ repressor, the cI gene product, which shuts off transcription of the phage genome. The λ N protein, in contrast, is a transcriptional antiterminator, required for expression of the terminator-distal genes, and thus, λ N mutants are growth-defective. When E. coli is infected with a λ double mutant that is defective in both N and cI (i.e., λN(-)cI(-)), at high multiplicities of 50 or more, it forms polylysogens that contain 20–30 copies of the λN(-)cI(-) genome integrated in the E. coli chromosome. Early studies revealed that the polylysogens underwent “conversion” to long filamentous cells that form tiny colonies on agar. Here, we report a large set of altered biochemical properties associated with this conversion, documenting an overall degeneration of the bacterial envelope. These properties reverted back to those of nonlysogenic E. coli as the metastable polylysogen spontaneously lost the λN(-)cI(-) genomes, suggesting that conversion is a direct result of the multiple copies of the prophage. Preliminary attempts to identify lambda genes that may be responsible for conversion ruled out several candidates, implicating a potentially novel lambda function that awaits further studies. MDPI 2020-02-28 /pmc/articles/PMC7084815/ /pubmed/32121308 http://dx.doi.org/10.3390/ijms21051667 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Barik, Sailen Mandal, Nitai C. Altered Growth and Envelope Properties of Polylysogens Containing Bacteriophage Lambda N(−)cI(−) Prophages |
title | Altered Growth and Envelope Properties of Polylysogens Containing Bacteriophage Lambda N(−)cI(−) Prophages |
title_full | Altered Growth and Envelope Properties of Polylysogens Containing Bacteriophage Lambda N(−)cI(−) Prophages |
title_fullStr | Altered Growth and Envelope Properties of Polylysogens Containing Bacteriophage Lambda N(−)cI(−) Prophages |
title_full_unstemmed | Altered Growth and Envelope Properties of Polylysogens Containing Bacteriophage Lambda N(−)cI(−) Prophages |
title_short | Altered Growth and Envelope Properties of Polylysogens Containing Bacteriophage Lambda N(−)cI(−) Prophages |
title_sort | altered growth and envelope properties of polylysogens containing bacteriophage lambda n(−)ci(−) prophages |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084815/ https://www.ncbi.nlm.nih.gov/pubmed/32121308 http://dx.doi.org/10.3390/ijms21051667 |
work_keys_str_mv | AT bariksailen alteredgrowthandenvelopepropertiesofpolylysogenscontainingbacteriophagelambdanciprophages AT mandalnitaic alteredgrowthandenvelopepropertiesofpolylysogenscontainingbacteriophagelambdanciprophages |