Cargando…

Carbon-Based Band Gap Engineering in the h-BN Analytical Modeling

The absence of a band gap in graphene is a hindrance to its application in electronic devices. Alternately, the complete replacement of carbon atoms with B and N atoms in graphene structures led to the formation of hexagonal boron nitride (h-BN) and caused the opening of its gap. Now, an exciting po...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmadi, Mohammad Taghi, Razmdideh, Ahmad, Rahimian Koloor, Seyed Saeid, Petrů, Michal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084880/
https://www.ncbi.nlm.nih.gov/pubmed/32106402
http://dx.doi.org/10.3390/ma13051026
Descripción
Sumario:The absence of a band gap in graphene is a hindrance to its application in electronic devices. Alternately, the complete replacement of carbon atoms with B and N atoms in graphene structures led to the formation of hexagonal boron nitride (h-BN) and caused the opening of its gap. Now, an exciting possibility is a partial substitution of C atoms with B and N atoms in the graphene structure, which caused the formation of a boron nitride composite with specified stoichiometry. BC(2)N nanotubes are more stable than other triple compounds due to the existence of a maximum number of B–N and C–C bonds. This paper focused on the nearest neighbor’s tight-binding method to explore the dispersion relation of BC(2)N, which has no chemical bond between its carbon atoms. More specifically, the band dispersion of this specific structure and the effects of energy hopping in boron–carbon and nitrogen–carbon atoms on the band gap are studied. Besides, the band structure is achieved from density functional theory (DFT) using the generalized gradient approximations (GGA) approximation method. This calculation shows that this specific structure is semimetal, and the band gap energy is 0.167 ev.