Cargando…

Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling

Biofilms are a multicellular way of life, where bacterial cells are close together and embedded in a hydrated macromolecular matrix which offers a number of advantages to the cells. Extracellular polysaccharides play an important role in matrix setup and maintenance. A water-insoluble polysaccharide...

Descripción completa

Detalles Bibliográficos
Autores principales: Bellich, Barbara, Jou, Ining A., Caterino, Marco, Rizzo, Roberto, Ravenscroft, Neil, Fazli, Mustafa, Tolker-Nielsen, Tim, Brady, John W., Cescutti, Paola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084887/
https://www.ncbi.nlm.nih.gov/pubmed/32131450
http://dx.doi.org/10.3390/ijms21051702
_version_ 1783508826409926656
author Bellich, Barbara
Jou, Ining A.
Caterino, Marco
Rizzo, Roberto
Ravenscroft, Neil
Fazli, Mustafa
Tolker-Nielsen, Tim
Brady, John W.
Cescutti, Paola
author_facet Bellich, Barbara
Jou, Ining A.
Caterino, Marco
Rizzo, Roberto
Ravenscroft, Neil
Fazli, Mustafa
Tolker-Nielsen, Tim
Brady, John W.
Cescutti, Paola
author_sort Bellich, Barbara
collection PubMed
description Biofilms are a multicellular way of life, where bacterial cells are close together and embedded in a hydrated macromolecular matrix which offers a number of advantages to the cells. Extracellular polysaccharides play an important role in matrix setup and maintenance. A water-insoluble polysaccharide was isolated and purified from the biofilm produced by Burkholderia cenocepacia strain H111, a cystic fibrosis pathogen. Its composition and glycosidic linkages were determined using Gas–Liquid Chromatography–Mass Spectrometry (GLC–MS) on appropriate carbohydrate derivatives while its complete structure was unraveled by 1D and 2D NMR spectroscopy in deuterated sodium hydroxide (NaOD) aqueous solutions. All the collected data demonstrated the following repeating unit for the water-insoluble B. cenocepacia biofilm polysaccharide: [3)-α-d-Galp-(1→3)-α-d-Glcp-(1→3)-α-d-Galp-(1→3)-α-d-Manp-(1→](n) Molecular modelling was used, coupled with NMR Nuclear Overhauser Effect (NOE) data, to obtain information about local structural motifs which could give hints about the polysaccharide insolubility. Both modelling and NMR data pointed at restricted dynamics of local conformations which were ascribed to the presence of inter-residue hydrogen bonds and to steric restrictions. In addition, the good correlation between NOE data and calculated interatomic distances by molecular dynamics simulations validated potential energy functions used for calculations.
format Online
Article
Text
id pubmed-7084887
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70848872020-03-23 Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling Bellich, Barbara Jou, Ining A. Caterino, Marco Rizzo, Roberto Ravenscroft, Neil Fazli, Mustafa Tolker-Nielsen, Tim Brady, John W. Cescutti, Paola Int J Mol Sci Article Biofilms are a multicellular way of life, where bacterial cells are close together and embedded in a hydrated macromolecular matrix which offers a number of advantages to the cells. Extracellular polysaccharides play an important role in matrix setup and maintenance. A water-insoluble polysaccharide was isolated and purified from the biofilm produced by Burkholderia cenocepacia strain H111, a cystic fibrosis pathogen. Its composition and glycosidic linkages were determined using Gas–Liquid Chromatography–Mass Spectrometry (GLC–MS) on appropriate carbohydrate derivatives while its complete structure was unraveled by 1D and 2D NMR spectroscopy in deuterated sodium hydroxide (NaOD) aqueous solutions. All the collected data demonstrated the following repeating unit for the water-insoluble B. cenocepacia biofilm polysaccharide: [3)-α-d-Galp-(1→3)-α-d-Glcp-(1→3)-α-d-Galp-(1→3)-α-d-Manp-(1→](n) Molecular modelling was used, coupled with NMR Nuclear Overhauser Effect (NOE) data, to obtain information about local structural motifs which could give hints about the polysaccharide insolubility. Both modelling and NMR data pointed at restricted dynamics of local conformations which were ascribed to the presence of inter-residue hydrogen bonds and to steric restrictions. In addition, the good correlation between NOE data and calculated interatomic distances by molecular dynamics simulations validated potential energy functions used for calculations. MDPI 2020-03-02 /pmc/articles/PMC7084887/ /pubmed/32131450 http://dx.doi.org/10.3390/ijms21051702 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bellich, Barbara
Jou, Ining A.
Caterino, Marco
Rizzo, Roberto
Ravenscroft, Neil
Fazli, Mustafa
Tolker-Nielsen, Tim
Brady, John W.
Cescutti, Paola
Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling
title Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling
title_full Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling
title_fullStr Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling
title_full_unstemmed Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling
title_short Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling
title_sort burkholderiacenocepacia h111 produces a water-insoluble exopolysaccharide in biofilm: structural determination and molecular modelling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084887/
https://www.ncbi.nlm.nih.gov/pubmed/32131450
http://dx.doi.org/10.3390/ijms21051702
work_keys_str_mv AT bellichbarbara burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling
AT jouininga burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling
AT caterinomarco burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling
AT rizzoroberto burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling
AT ravenscroftneil burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling
AT fazlimustafa burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling
AT tolkernielsentim burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling
AT bradyjohnw burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling
AT cescuttipaola burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling