Cargando…
Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling
Biofilms are a multicellular way of life, where bacterial cells are close together and embedded in a hydrated macromolecular matrix which offers a number of advantages to the cells. Extracellular polysaccharides play an important role in matrix setup and maintenance. A water-insoluble polysaccharide...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084887/ https://www.ncbi.nlm.nih.gov/pubmed/32131450 http://dx.doi.org/10.3390/ijms21051702 |
_version_ | 1783508826409926656 |
---|---|
author | Bellich, Barbara Jou, Ining A. Caterino, Marco Rizzo, Roberto Ravenscroft, Neil Fazli, Mustafa Tolker-Nielsen, Tim Brady, John W. Cescutti, Paola |
author_facet | Bellich, Barbara Jou, Ining A. Caterino, Marco Rizzo, Roberto Ravenscroft, Neil Fazli, Mustafa Tolker-Nielsen, Tim Brady, John W. Cescutti, Paola |
author_sort | Bellich, Barbara |
collection | PubMed |
description | Biofilms are a multicellular way of life, where bacterial cells are close together and embedded in a hydrated macromolecular matrix which offers a number of advantages to the cells. Extracellular polysaccharides play an important role in matrix setup and maintenance. A water-insoluble polysaccharide was isolated and purified from the biofilm produced by Burkholderia cenocepacia strain H111, a cystic fibrosis pathogen. Its composition and glycosidic linkages were determined using Gas–Liquid Chromatography–Mass Spectrometry (GLC–MS) on appropriate carbohydrate derivatives while its complete structure was unraveled by 1D and 2D NMR spectroscopy in deuterated sodium hydroxide (NaOD) aqueous solutions. All the collected data demonstrated the following repeating unit for the water-insoluble B. cenocepacia biofilm polysaccharide: [3)-α-d-Galp-(1→3)-α-d-Glcp-(1→3)-α-d-Galp-(1→3)-α-d-Manp-(1→](n) Molecular modelling was used, coupled with NMR Nuclear Overhauser Effect (NOE) data, to obtain information about local structural motifs which could give hints about the polysaccharide insolubility. Both modelling and NMR data pointed at restricted dynamics of local conformations which were ascribed to the presence of inter-residue hydrogen bonds and to steric restrictions. In addition, the good correlation between NOE data and calculated interatomic distances by molecular dynamics simulations validated potential energy functions used for calculations. |
format | Online Article Text |
id | pubmed-7084887 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70848872020-03-23 Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling Bellich, Barbara Jou, Ining A. Caterino, Marco Rizzo, Roberto Ravenscroft, Neil Fazli, Mustafa Tolker-Nielsen, Tim Brady, John W. Cescutti, Paola Int J Mol Sci Article Biofilms are a multicellular way of life, where bacterial cells are close together and embedded in a hydrated macromolecular matrix which offers a number of advantages to the cells. Extracellular polysaccharides play an important role in matrix setup and maintenance. A water-insoluble polysaccharide was isolated and purified from the biofilm produced by Burkholderia cenocepacia strain H111, a cystic fibrosis pathogen. Its composition and glycosidic linkages were determined using Gas–Liquid Chromatography–Mass Spectrometry (GLC–MS) on appropriate carbohydrate derivatives while its complete structure was unraveled by 1D and 2D NMR spectroscopy in deuterated sodium hydroxide (NaOD) aqueous solutions. All the collected data demonstrated the following repeating unit for the water-insoluble B. cenocepacia biofilm polysaccharide: [3)-α-d-Galp-(1→3)-α-d-Glcp-(1→3)-α-d-Galp-(1→3)-α-d-Manp-(1→](n) Molecular modelling was used, coupled with NMR Nuclear Overhauser Effect (NOE) data, to obtain information about local structural motifs which could give hints about the polysaccharide insolubility. Both modelling and NMR data pointed at restricted dynamics of local conformations which were ascribed to the presence of inter-residue hydrogen bonds and to steric restrictions. In addition, the good correlation between NOE data and calculated interatomic distances by molecular dynamics simulations validated potential energy functions used for calculations. MDPI 2020-03-02 /pmc/articles/PMC7084887/ /pubmed/32131450 http://dx.doi.org/10.3390/ijms21051702 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bellich, Barbara Jou, Ining A. Caterino, Marco Rizzo, Roberto Ravenscroft, Neil Fazli, Mustafa Tolker-Nielsen, Tim Brady, John W. Cescutti, Paola Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling |
title | Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling |
title_full | Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling |
title_fullStr | Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling |
title_full_unstemmed | Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling |
title_short | Burkholderiacenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling |
title_sort | burkholderiacenocepacia h111 produces a water-insoluble exopolysaccharide in biofilm: structural determination and molecular modelling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084887/ https://www.ncbi.nlm.nih.gov/pubmed/32131450 http://dx.doi.org/10.3390/ijms21051702 |
work_keys_str_mv | AT bellichbarbara burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling AT jouininga burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling AT caterinomarco burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling AT rizzoroberto burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling AT ravenscroftneil burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling AT fazlimustafa burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling AT tolkernielsentim burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling AT bradyjohnw burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling AT cescuttipaola burkholderiacenocepaciah111producesawaterinsolubleexopolysaccharideinbiofilmstructuraldeterminationandmolecularmodelling |