Cargando…

Optimizing Glass Fiber Molding Process Design by Reverse Warping

The purpose of this study is to clarify the influence of changes in glass fiber properties on warpage prediction, and to demonstrate the importance of accurate material property data in the numerical simulation of injection molding. In addition, this study proposes an optimization method based on th...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Han-Jui, Su, Zhi-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084986/
https://www.ncbi.nlm.nih.gov/pubmed/32150888
http://dx.doi.org/10.3390/ma13051151
_version_ 1783508849411489792
author Chang, Han-Jui
Su, Zhi-Ming
author_facet Chang, Han-Jui
Su, Zhi-Ming
author_sort Chang, Han-Jui
collection PubMed
description The purpose of this study is to clarify the influence of changes in glass fiber properties on warpage prediction, and to demonstrate the importance of accurate material property data in the numerical simulation of injection molding. In addition, this study proposes an optimization method based on the reverse warping agent model, in which the thermal conductivity of the plastic material is reduced, and the solidified layer on the surface of the mold is reduced and transferred from the molding material to the mold wall. This means that by the end of the cooling phase, the shrinkage of the molten zone within the component will continue, resulting in warpage. Based on the optimal process parameters, the sensitivity of the warpage prediction to the relationship between the two most important material properties, the glass fiber and holding pressure time, was analyzed. The material property model constants used for numerical simulations can sometimes vary significantly due to inherent experimental measurement errors, the resolution of the test device, or the manner in which the curve fit is performed to determine the model constants. This model has been developed to intelligently determine the preferred processing parameters and to gradually correct the details of the molding conditions. Thus, the cavity is separated in the critical warpage region, and a new cavity geometry with a reverse warped profile is placed into the mold base slot. The results show that the hypothetical and reasonable variation of the glass fiber model constant and the holding pressure time relationship may significantly affect the magnitude of the warpage prediction of glass fiber products. The greatest differences were found as a result of the warping orientation of the glass fiber material.
format Online
Article
Text
id pubmed-7084986
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70849862020-03-23 Optimizing Glass Fiber Molding Process Design by Reverse Warping Chang, Han-Jui Su, Zhi-Ming Materials (Basel) Article The purpose of this study is to clarify the influence of changes in glass fiber properties on warpage prediction, and to demonstrate the importance of accurate material property data in the numerical simulation of injection molding. In addition, this study proposes an optimization method based on the reverse warping agent model, in which the thermal conductivity of the plastic material is reduced, and the solidified layer on the surface of the mold is reduced and transferred from the molding material to the mold wall. This means that by the end of the cooling phase, the shrinkage of the molten zone within the component will continue, resulting in warpage. Based on the optimal process parameters, the sensitivity of the warpage prediction to the relationship between the two most important material properties, the glass fiber and holding pressure time, was analyzed. The material property model constants used for numerical simulations can sometimes vary significantly due to inherent experimental measurement errors, the resolution of the test device, or the manner in which the curve fit is performed to determine the model constants. This model has been developed to intelligently determine the preferred processing parameters and to gradually correct the details of the molding conditions. Thus, the cavity is separated in the critical warpage region, and a new cavity geometry with a reverse warped profile is placed into the mold base slot. The results show that the hypothetical and reasonable variation of the glass fiber model constant and the holding pressure time relationship may significantly affect the magnitude of the warpage prediction of glass fiber products. The greatest differences were found as a result of the warping orientation of the glass fiber material. MDPI 2020-03-05 /pmc/articles/PMC7084986/ /pubmed/32150888 http://dx.doi.org/10.3390/ma13051151 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chang, Han-Jui
Su, Zhi-Ming
Optimizing Glass Fiber Molding Process Design by Reverse Warping
title Optimizing Glass Fiber Molding Process Design by Reverse Warping
title_full Optimizing Glass Fiber Molding Process Design by Reverse Warping
title_fullStr Optimizing Glass Fiber Molding Process Design by Reverse Warping
title_full_unstemmed Optimizing Glass Fiber Molding Process Design by Reverse Warping
title_short Optimizing Glass Fiber Molding Process Design by Reverse Warping
title_sort optimizing glass fiber molding process design by reverse warping
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084986/
https://www.ncbi.nlm.nih.gov/pubmed/32150888
http://dx.doi.org/10.3390/ma13051151
work_keys_str_mv AT changhanjui optimizingglassfibermoldingprocessdesignbyreversewarping
AT suzhiming optimizingglassfibermoldingprocessdesignbyreversewarping