Cargando…

Comparison of Different Cervical Finish Lines of All-Ceramic Crowns on Primary Molars in Finite Element Analysis

This study aimed to conduct a stress analysis of four types of cervical finish lines in posterior all-ceramic crowns on the primary roots of molar teeth. Four different types of finish lines (shoulder 0.5 mm, feather-edged, chamfer 0.6 mm, and mini chamfer 0.4 mm) and two all-ceramic crown materials...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Chin-Yun, Lan, Ting-Hsun, Liu, Pao-Hsin, Fu, Wan-Ru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084989/
https://www.ncbi.nlm.nih.gov/pubmed/32121586
http://dx.doi.org/10.3390/ma13051094
Descripción
Sumario:This study aimed to conduct a stress analysis of four types of cervical finish lines in posterior all-ceramic crowns on the primary roots of molar teeth. Four different types of finish lines (shoulder 0.5 mm, feather-edged, chamfer 0.6 mm, and mini chamfer 0.4 mm) and two all-ceramic crown materials (zirconia and lithium disilicate) were used to construct eight finite element primary tooth models with full-coverage crowns. A load of 200 N was applied at two different loading angles (0° and 15°) so as to mimic children’s masticatory force and occlusal tendency. The maximum stress distribution from the three-dimensional finite element models was determined, and the main effect of each factor (loading type, material, and finish line types) was evaluated in terms of the stress values for all of the models. The results indicated that the loading type (90.25%) was the main factor influencing the maximum stress value of the primary root, and that the feather-edged margin showed the highest stress value (p = 0.002). In conclusion, shoulder and chamfer types of finish lines with a 0.4–0.6 mm thickness are recommended for deciduous tooth preparation, according to the biomechanical analysis.