Cargando…
Modal Performance of Two-Fiber Orthogonal Gradient Composite Laminates Embedded with SMA
A gradient composite laminate that was composed of two-phase fibers, a shape memory alloy (SMA), and graphite was prepared to investigate modal performance and improve vibration behavior. The stress-strain relation of the single-layer composite plates was derived from Kirchhoff thin plate theory and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085011/ https://www.ncbi.nlm.nih.gov/pubmed/32121628 http://dx.doi.org/10.3390/ma13051102 |
Sumario: | A gradient composite laminate that was composed of two-phase fibers, a shape memory alloy (SMA), and graphite was prepared to investigate modal performance and improve vibration behavior. The stress-strain relation of the single-layer composite plates was derived from Kirchhoff thin plate theory and the material constitutive of the SMA. A gradient distribution model and the eigenvalue equations of gradient composite laminates were developed. The influence of the fiber component content gradient distribution, pre-strain, the two-phase fiber volume fraction, and geometric parameters on the modal performance was analyzed. This study provides a method to avoid the structural resonance of composite laminates that are embedded with an SMA through the gradient distribution of two-phase fiber content that leads to the interaction of the material properties. |
---|