Cargando…

Discrete Element Simulation and Validation of a Mixing Process of Granular Materials

The mixing processes of granular materials have gained wide interest among various fields of science and engineering. In this study, our focus is a mixing process for offshore mining. We conducted numerical simulations using the discrete element method (DEM) in comparison with experimental works on...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jian, Furuichi, Mikito, Nishiura, Daisuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085081/
https://www.ncbi.nlm.nih.gov/pubmed/32182646
http://dx.doi.org/10.3390/ma13051208
Descripción
Sumario:The mixing processes of granular materials have gained wide interest among various fields of science and engineering. In this study, our focus is a mixing process for offshore mining. We conducted numerical simulations using the discrete element method (DEM) in comparison with experimental works on mixing color sand. Careful calibration of initial packing densities has been performed for the simulations. For validation, the steady-state torques on the mixer head, the maximal increase of surface height after mixing, and the surface mixing patterns have been compared. The effect of particle size on the simulation results has been clarified. With the particle size approaching the actual particle size, consistent torques and mixing patterns indicate the capability of the DEM code for studying the particular mixing process, while the results for the maximal increase of surface height should be interpreted with more caution.