Cargando…
Electronic Structure of Nitrogen- and Phosphorus-Doped Graphenes Grown by Chemical Vapor Deposition Method
Heteroatom doping is a widely used method for the modification of the electronic and chemical properties of graphene. A low-pressure chemical vapor deposition technique (CVD) is used here to grow pure, nitrogen-doped and phosphorous-doped few-layer graphene films from methane, acetonitrile and metha...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085186/ https://www.ncbi.nlm.nih.gov/pubmed/32155705 http://dx.doi.org/10.3390/ma13051173 |
Sumario: | Heteroatom doping is a widely used method for the modification of the electronic and chemical properties of graphene. A low-pressure chemical vapor deposition technique (CVD) is used here to grow pure, nitrogen-doped and phosphorous-doped few-layer graphene films from methane, acetonitrile and methane-phosphine mixture, respectively. The electronic structure of the films transferred onto SiO(2)/Si wafers by wet etching of copper substrates is studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy using a synchrotron radiation source. Annealing in an ultra-high vacuum at ca. 773 K allows for the removal of impurities formed on the surface of films during the synthesis and transfer procedure and changes the chemical state of nitrogen in nitrogen-doped graphene. Core level XPS spectra detect a low n-type doping of graphene film when nitrogen or phosphorous atoms are incorporated in the lattice. The electrical sheet resistance increases in the order: graphene < P-graphene < N-graphene. This tendency is related to the density of defects evaluated from the ratio of intensities of Raman peaks, valence band XPS and NEXAFS spectroscopy data. |
---|