Cargando…

Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro

Our previous studies indicated that phosphoinositide specific phospholipase Cγ1 (PLCγ1) was involved in autophagy induction in colon and hepatic carcinoma cells. However, whether and how PLCγ1 regulation in human lung adenocarcinoma is linked to autophagy remains unclear. Here, we assessed the prote...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Xiaohong, Fu, Haijing, Chen, Rui, Wang, Yue, Zhan, Yanyan, Song, Gang, Hu, Tianhui, Xia, Chun, Tian, Xuemei, Zhang, Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085223/
https://www.ncbi.nlm.nih.gov/pubmed/32210730
http://dx.doi.org/10.7150/ijbs.42962
_version_ 1783508902657130496
author Lu, Xiaohong
Fu, Haijing
Chen, Rui
Wang, Yue
Zhan, Yanyan
Song, Gang
Hu, Tianhui
Xia, Chun
Tian, Xuemei
Zhang, Bing
author_facet Lu, Xiaohong
Fu, Haijing
Chen, Rui
Wang, Yue
Zhan, Yanyan
Song, Gang
Hu, Tianhui
Xia, Chun
Tian, Xuemei
Zhang, Bing
author_sort Lu, Xiaohong
collection PubMed
description Our previous studies indicated that phosphoinositide specific phospholipase Cγ1 (PLCγ1) was involved in autophagy induction in colon and hepatic carcinoma cells. However, whether and how PLCγ1 regulation in human lung adenocarcinoma is linked to autophagy remains unclear. Here, we assessed the protein expression of PLCγ1 in human lung adenocarcinoma tissue using immunohistochemistry assay and the relationship between PLCG1 and autophagy in The Cancer Genome Atlas Network (TCGA) using Spearman correlation analysis and GSEA software. Furthermore, the interaction between PLCγ1 and autophagy-related signal molecules was investigated in human lung adenocarcinoma A549 cells treated with different inhibitors or transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vectors using MTT, clonogenicity, Transwell migration, RT-PCR, Caspase-3, mitochondrial transmembrane potential, and western blotting assays, as well as transmission electron microscope technique. Additionally, the effect of shRNA/PLCγ1 alone or combined with autophagic activator Lithium Chloride (LiCl) on tumor growth and metastasis was measured using immunohistochemistry and assays in A549 xenograft nude mouse model. The results showed that increased PLCγ1 expression occurred frequently in human lung adenocarcinoma tissue with higher grades of T in TNM staging classification. PLCγ1 significantly enriched in autophagic process and regulation, which negatively regulating autophagy was enriched in higher expression of PLCγ1. PLCγ1 inhibition partially reduced cell proliferation and migration of A549 cells, with an increased autophagic flux involving alterations of AMPKα, mTOR, and ERK levels. However, PLCγ1 inhibition-driven autophagy led to cell death without depending on Caspase-3 and RIP1. Additionally, the abrogation of PLCγ1 signaling by shRNA and combination with autophagic activator LiCl could efficaciously suppress tumor growth and metastasis in A549 xenograft nude mice, in combination with a decrease in P62 level. These findings collectively suggest that reduction of cell proliferation and migration by PLCγ1 inhibition could be partially attributed to PLCγ1 inhibition-driven autophagic cell death (ACD). It highlights the potential role of a combination between targeting PLCγ1 and autophagy pathway in anti-tumor therapy, which may be an efficacious new strategy to overcome the autophagy addition of tumor and acquired resistance to current therapy.
format Online
Article
Text
id pubmed-7085223
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-70852232020-03-24 Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro Lu, Xiaohong Fu, Haijing Chen, Rui Wang, Yue Zhan, Yanyan Song, Gang Hu, Tianhui Xia, Chun Tian, Xuemei Zhang, Bing Int J Biol Sci Research Paper Our previous studies indicated that phosphoinositide specific phospholipase Cγ1 (PLCγ1) was involved in autophagy induction in colon and hepatic carcinoma cells. However, whether and how PLCγ1 regulation in human lung adenocarcinoma is linked to autophagy remains unclear. Here, we assessed the protein expression of PLCγ1 in human lung adenocarcinoma tissue using immunohistochemistry assay and the relationship between PLCG1 and autophagy in The Cancer Genome Atlas Network (TCGA) using Spearman correlation analysis and GSEA software. Furthermore, the interaction between PLCγ1 and autophagy-related signal molecules was investigated in human lung adenocarcinoma A549 cells treated with different inhibitors or transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vectors using MTT, clonogenicity, Transwell migration, RT-PCR, Caspase-3, mitochondrial transmembrane potential, and western blotting assays, as well as transmission electron microscope technique. Additionally, the effect of shRNA/PLCγ1 alone or combined with autophagic activator Lithium Chloride (LiCl) on tumor growth and metastasis was measured using immunohistochemistry and assays in A549 xenograft nude mouse model. The results showed that increased PLCγ1 expression occurred frequently in human lung adenocarcinoma tissue with higher grades of T in TNM staging classification. PLCγ1 significantly enriched in autophagic process and regulation, which negatively regulating autophagy was enriched in higher expression of PLCγ1. PLCγ1 inhibition partially reduced cell proliferation and migration of A549 cells, with an increased autophagic flux involving alterations of AMPKα, mTOR, and ERK levels. However, PLCγ1 inhibition-driven autophagy led to cell death without depending on Caspase-3 and RIP1. Additionally, the abrogation of PLCγ1 signaling by shRNA and combination with autophagic activator LiCl could efficaciously suppress tumor growth and metastasis in A549 xenograft nude mice, in combination with a decrease in P62 level. These findings collectively suggest that reduction of cell proliferation and migration by PLCγ1 inhibition could be partially attributed to PLCγ1 inhibition-driven autophagic cell death (ACD). It highlights the potential role of a combination between targeting PLCγ1 and autophagy pathway in anti-tumor therapy, which may be an efficacious new strategy to overcome the autophagy addition of tumor and acquired resistance to current therapy. Ivyspring International Publisher 2020-02-21 /pmc/articles/PMC7085223/ /pubmed/32210730 http://dx.doi.org/10.7150/ijbs.42962 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Lu, Xiaohong
Fu, Haijing
Chen, Rui
Wang, Yue
Zhan, Yanyan
Song, Gang
Hu, Tianhui
Xia, Chun
Tian, Xuemei
Zhang, Bing
Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro
title Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro
title_full Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro
title_fullStr Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro
title_full_unstemmed Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro
title_short Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro
title_sort phosphoinositide specific phospholipase cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma a549 cells in vivo and in vitro
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085223/
https://www.ncbi.nlm.nih.gov/pubmed/32210730
http://dx.doi.org/10.7150/ijbs.42962
work_keys_str_mv AT luxiaohong phosphoinositidespecificphospholipasecg1inhibitiondrivenautophagycausedcelldeathinhumanlungadenocarcinomaa549cellsinvivoandinvitro
AT fuhaijing phosphoinositidespecificphospholipasecg1inhibitiondrivenautophagycausedcelldeathinhumanlungadenocarcinomaa549cellsinvivoandinvitro
AT chenrui phosphoinositidespecificphospholipasecg1inhibitiondrivenautophagycausedcelldeathinhumanlungadenocarcinomaa549cellsinvivoandinvitro
AT wangyue phosphoinositidespecificphospholipasecg1inhibitiondrivenautophagycausedcelldeathinhumanlungadenocarcinomaa549cellsinvivoandinvitro
AT zhanyanyan phosphoinositidespecificphospholipasecg1inhibitiondrivenautophagycausedcelldeathinhumanlungadenocarcinomaa549cellsinvivoandinvitro
AT songgang phosphoinositidespecificphospholipasecg1inhibitiondrivenautophagycausedcelldeathinhumanlungadenocarcinomaa549cellsinvivoandinvitro
AT hutianhui phosphoinositidespecificphospholipasecg1inhibitiondrivenautophagycausedcelldeathinhumanlungadenocarcinomaa549cellsinvivoandinvitro
AT xiachun phosphoinositidespecificphospholipasecg1inhibitiondrivenautophagycausedcelldeathinhumanlungadenocarcinomaa549cellsinvivoandinvitro
AT tianxuemei phosphoinositidespecificphospholipasecg1inhibitiondrivenautophagycausedcelldeathinhumanlungadenocarcinomaa549cellsinvivoandinvitro
AT zhangbing phosphoinositidespecificphospholipasecg1inhibitiondrivenautophagycausedcelldeathinhumanlungadenocarcinomaa549cellsinvivoandinvitro