Cargando…
Characterization of the Observational Covariance Matrix of Hyper-Spectral Infrared Satellite Sensors Directly from Measured Earth Views
The observational covariance matrix, whose diagonal square root is currently named radiometric noise, is one of the most important elements to characterize a given instrument. It determines the precision of measurements and their possible spectral inter-correlation. The characterization of this matr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085552/ https://www.ncbi.nlm.nih.gov/pubmed/32182769 http://dx.doi.org/10.3390/s20051492 |
_version_ | 1783508957919182848 |
---|---|
author | Serio, Carmine Masiello, Guido Mastro, Pietro Tobin, David C. |
author_facet | Serio, Carmine Masiello, Guido Mastro, Pietro Tobin, David C. |
author_sort | Serio, Carmine |
collection | PubMed |
description | The observational covariance matrix, whose diagonal square root is currently named radiometric noise, is one of the most important elements to characterize a given instrument. It determines the precision of measurements and their possible spectral inter-correlation. The characterization of this matrix is currently performed with blackbody targets of known temperature and is, therefore, an output of the calibration unit of the instrument system. We developed a methodology that can estimate the observational covariance matrix directly from calibrated Earth-scene observations. The technique can complement the usual analysis based on onboard blackbody calibration and is, therefore, a useful back up to check the overall quality of the calibration unit. The methodology was exemplified by application to three satellite Fourier transform spectrometers: IASI (Infrared Atmospheric Sounder Interferometer), CrIS (Cross-Track Infrared Sounder), and HIRAS (Hyperspectral Infrared Atmospheric Sounder). It was shown that these three instruments are working as expected based on the pre-flight and in-flight characterization of the radiometric noise. However, for all instruments, the analysis of the covariance matrix reveals extra correlation among channels, especially in the short wave spectral regions. |
format | Online Article Text |
id | pubmed-7085552 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70855522020-03-23 Characterization of the Observational Covariance Matrix of Hyper-Spectral Infrared Satellite Sensors Directly from Measured Earth Views Serio, Carmine Masiello, Guido Mastro, Pietro Tobin, David C. Sensors (Basel) Article The observational covariance matrix, whose diagonal square root is currently named radiometric noise, is one of the most important elements to characterize a given instrument. It determines the precision of measurements and their possible spectral inter-correlation. The characterization of this matrix is currently performed with blackbody targets of known temperature and is, therefore, an output of the calibration unit of the instrument system. We developed a methodology that can estimate the observational covariance matrix directly from calibrated Earth-scene observations. The technique can complement the usual analysis based on onboard blackbody calibration and is, therefore, a useful back up to check the overall quality of the calibration unit. The methodology was exemplified by application to three satellite Fourier transform spectrometers: IASI (Infrared Atmospheric Sounder Interferometer), CrIS (Cross-Track Infrared Sounder), and HIRAS (Hyperspectral Infrared Atmospheric Sounder). It was shown that these three instruments are working as expected based on the pre-flight and in-flight characterization of the radiometric noise. However, for all instruments, the analysis of the covariance matrix reveals extra correlation among channels, especially in the short wave spectral regions. MDPI 2020-03-09 /pmc/articles/PMC7085552/ /pubmed/32182769 http://dx.doi.org/10.3390/s20051492 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Serio, Carmine Masiello, Guido Mastro, Pietro Tobin, David C. Characterization of the Observational Covariance Matrix of Hyper-Spectral Infrared Satellite Sensors Directly from Measured Earth Views |
title | Characterization of the Observational Covariance Matrix of Hyper-Spectral Infrared Satellite Sensors Directly from Measured Earth Views |
title_full | Characterization of the Observational Covariance Matrix of Hyper-Spectral Infrared Satellite Sensors Directly from Measured Earth Views |
title_fullStr | Characterization of the Observational Covariance Matrix of Hyper-Spectral Infrared Satellite Sensors Directly from Measured Earth Views |
title_full_unstemmed | Characterization of the Observational Covariance Matrix of Hyper-Spectral Infrared Satellite Sensors Directly from Measured Earth Views |
title_short | Characterization of the Observational Covariance Matrix of Hyper-Spectral Infrared Satellite Sensors Directly from Measured Earth Views |
title_sort | characterization of the observational covariance matrix of hyper-spectral infrared satellite sensors directly from measured earth views |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085552/ https://www.ncbi.nlm.nih.gov/pubmed/32182769 http://dx.doi.org/10.3390/s20051492 |
work_keys_str_mv | AT seriocarmine characterizationoftheobservationalcovariancematrixofhyperspectralinfraredsatellitesensorsdirectlyfrommeasuredearthviews AT masielloguido characterizationoftheobservationalcovariancematrixofhyperspectralinfraredsatellitesensorsdirectlyfrommeasuredearthviews AT mastropietro characterizationoftheobservationalcovariancematrixofhyperspectralinfraredsatellitesensorsdirectlyfrommeasuredearthviews AT tobindavidc characterizationoftheobservationalcovariancematrixofhyperspectralinfraredsatellitesensorsdirectlyfrommeasuredearthviews |