Cargando…
Characterization of the Observational Covariance Matrix of Hyper-Spectral Infrared Satellite Sensors Directly from Measured Earth Views
The observational covariance matrix, whose diagonal square root is currently named radiometric noise, is one of the most important elements to characterize a given instrument. It determines the precision of measurements and their possible spectral inter-correlation. The characterization of this matr...
Autores principales: | Serio, Carmine, Masiello, Guido, Mastro, Pietro, Tobin, David C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085552/ https://www.ncbi.nlm.nih.gov/pubmed/32182769 http://dx.doi.org/10.3390/s20051492 |
Ejemplares similares
-
SEVIRI Hyper-Fast Forward Model with Application to Emissivity Retrieval
por: Masiello, Guido, et al.
Publicado: (2019) -
Optimal Interpolation for Infrared Products from Hyperspectral Satellite Imagers and Sounders †
por: De Feis, Italia, et al.
Publicado: (2020) -
An Efficient Algorithm for Infrared Earth Sensor with a Large Field of View
por: Wang, Bendong, et al.
Publicado: (2022) -
NO(2) pollution over selected cities in the Po valley in 2018–2021 and its possible effects on boosting COVID-19 deaths
por: Serio, Carmine, et al.
Publicado: (2022) -
Covariate-assisted spectral clustering
por: Binkiewicz, N., et al.
Publicado: (2017)