Cargando…
Fast Approximations of Activation Functions in Deep Neural Networks when using Posit Arithmetic
With increasing real-time constraints being put on the use of Deep Neural Networks (DNNs) by real-time scenarios, there is the need to review information representation. A very challenging path is to employ an encoding that allows a fast processing and hardware-friendly representation of information...
Autores principales: | Cococcioni, Marco, Rossi, Federico, Ruffaldi, Emanuele, Saponara, Sergio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085555/ https://www.ncbi.nlm.nih.gov/pubmed/32164152 http://dx.doi.org/10.3390/s20051515 |
Ejemplares similares
-
Rethinking arithmetic for deep neural networks
por: Constantinides, G. A.
Publicado: (2020) -
Approximation processes in arithmetic in old adulthood
por: Ganor-Stern, Dana
Publicado: (2018) -
Energy-Efficient Hardware Implementation of Fully Connected Artificial Neural Networks Using Approximate Arithmetic Blocks
por: Esmali Nojehdeh, Mohammadreza, et al.
Publicado: (2023) -
Failure to replicate the benefit of approximate arithmetic training for symbolic arithmetic fluency in adults
por: Szkudlarek, Emily, et al.
Publicado: (2020) -
Fostering Formal Commutativity Knowledge with Approximate
Arithmetic
por: Hansen, Sonja Maria, et al.
Publicado: (2015)