Cargando…
Sparse Feature Learning of Hyperspectral Imagery via Multiobjective-Based Extreme Learning Machine
Hyperspectral image (HSI) consists of hundreds of narrow spectral band components with rich spectral and spatial information. Extreme Learning Machine (ELM) has been widely used for HSI analysis. However, the classical ELM is difficult to use for sparse feature leaning due to its randomly generated...
Autores principales: | Fang, Xiaoping, Cai, Yaoming, Cai, Zhihua, Jiang, Xinwei, Chen, Zhikun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085560/ https://www.ncbi.nlm.nih.gov/pubmed/32110909 http://dx.doi.org/10.3390/s20051262 |
Ejemplares similares
-
Spectral-Spatial Feature Extraction of Hyperspectral Images Based on Propagation Filter
por: Chen, Zhikun, et al.
Publicado: (2018) -
Hierarchical Sparse Learning with Spectral-Spatial Information for Hyperspectral Imagery Denoising
por: Liu, Shuai, et al.
Publicado: (2016) -
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018) -
Weighted Sparseness-Based Anomaly Detection for Hyperspectral Imagery
por: Lian, Xing, et al.
Publicado: (2023) -
Visual Tracking Based on Extreme Learning Machine and Sparse Representation
por: Wang, Baoxian, et al.
Publicado: (2015)