Cargando…
Optimization of Submodularity and BBO-Based Routing Protocol for Wireless Sensor Deployment
Wireless sensors are limited by node costs, communication efficiency, and energy consumption when wireless sensors are deployed on a large scale. The use of submodular optimization can reduce the deployment cost. This paper proposes a sensor deployment method based on the Improved Heuristic Ant Colo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085567/ https://www.ncbi.nlm.nih.gov/pubmed/32120900 http://dx.doi.org/10.3390/s20051286 |
Sumario: | Wireless sensors are limited by node costs, communication efficiency, and energy consumption when wireless sensors are deployed on a large scale. The use of submodular optimization can reduce the deployment cost. This paper proposes a sensor deployment method based on the Improved Heuristic Ant Colony Algorithm-Chaos Optimization of Padded Sensor Placements at Informative and cost-Effective Locations (IHACA-COpSPIEL) algorithm and a routing protocol based on an improved Biogeography-Based Optimization (BBO) algorithm. First, a mathematical model with submodularity is established. Second, the IHACA is combined with pSPIEL-based on chaos optimization to determine the shortest path. Finally, the selected sensors are used in the biogeography of the improved BBO routing protocols to transmit data. The experimental results show that the IHACA-COpSPIEL algorithm can go beyond the local optimal solutions, and the communication cost of IHACA-COpSPIEL is 38.42%, 24.19% and 8.31%, respectively, lower than that of the greedy algorithm, the pSPIEL algorithm and the IHACA algorithm. It uses fewer sensors and has a longer life cycle. Compared with the LEACH protocol, the routing protocol based on the improved BBO extends the life cycle by 30.74% and has lower energy consumption. |
---|