Cargando…
Structural Damage Localization and Quantification Based on a CEEMDAN Hilbert Transform Neural Network Approach: A Model Steel Truss Bridge Case Study
Vibrations of complex structures such as bridges mostly present nonlinear and non-stationary behaviors. Recently, one of the most common techniques to analyze the nonlinear and non-stationary structural response is Hilbert–Huang Transform (HHT). This paper aims to evaluate the performance of HHT bas...
Autores principales: | Mousavi, Asma Alsadat, Zhang, Chunwei, Masri, Sami F., Gholipour, Gholamreza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085609/ https://www.ncbi.nlm.nih.gov/pubmed/32110964 http://dx.doi.org/10.3390/s20051271 |
Ejemplares similares
-
Probabilistic Damage Detection of a Steel Truss Bridge Model by Optimally Designed Bayesian Neural Network
por: Yin, Tao, et al.
Publicado: (2018) -
Mechanical Behavior and Failure Mode of Steel–Concrete Connection Joints in a Hybrid Truss Bridge: Experimental Investigation
por: Tan, Yingliang, et al.
Publicado: (2020) -
Hilbert transforms
por: King, Frederick W
Publicado: (2009) -
Hilbert transforms
por: King, Fred
Publicado: (2008) -
Displacement Monitoring of a Bridge Based on BDS Measurement by CEEMDAN–Adaptive Threshold Wavelet Method
por: Mo, Chunlan, et al.
Publicado: (2023)