Cargando…
A Novel Change Detection Method Based on Statistical Distribution Characteristics Using Multi-Temporal PolSAR Data
Unsupervised change detection approaches, which are relatively straightforward and easy to implement and interpret, and which require no human intervention, are widely used in change detection. Polarimetric synthetic aperture radar (PolSAR), which has an all-weather response capability with increase...
Autores principales: | Zhao, Jinqi, Chang, Yonglei, Yang, Jie, Niu, Yufen, Lu, Zhong, Li, Pingxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085628/ https://www.ncbi.nlm.nih.gov/pubmed/32182925 http://dx.doi.org/10.3390/s20051508 |
Ejemplares similares
-
A PolSAR Image Segmentation Algorithm Based on Scattering Characteristics and the Revised Wishart Distance
por: Yi, Huiguo, et al.
Publicado: (2018) -
An Unsupervised Change Detection Method Using Time-Series of PolSAR Images from Radarsat-2 and GaoFen-3
por: Liu, Wensong, et al.
Publicado: (2018) -
Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks
por: Wang, Lei, et al.
Publicado: (2018) -
Integration of Fine Model-Based Decomposition and Guard Filter for Ship Detection in PolSAR Images
por: Liu, Dongsheng, et al.
Publicado: (2021) -
Supervised PolSAR Image Classification with Multiple Features and Locally Linear Embedding
por: Zhang, Qiang, et al.
Publicado: (2018)