Cargando…
Methods for Detection of Bioimpedance Variations in Resource Constrained Environments
Changes in a certain parameter are often a few magnitudes smaller than the base value of the parameter, specifying significant requirements for the dynamic range and noise levels of the measurement system. In case of electrical bioimpedance acquisition, the variations can be 1000 times smaller than...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085632/ https://www.ncbi.nlm.nih.gov/pubmed/32131467 http://dx.doi.org/10.3390/s20051363 |
_version_ | 1783508976418160640 |
---|---|
author | Priidel, Eiko Annus, Paul Krivošei, Andrei Rist, Marek Land, Raul Min, Mart Märtens, Olev |
author_facet | Priidel, Eiko Annus, Paul Krivošei, Andrei Rist, Marek Land, Raul Min, Mart Märtens, Olev |
author_sort | Priidel, Eiko |
collection | PubMed |
description | Changes in a certain parameter are often a few magnitudes smaller than the base value of the parameter, specifying significant requirements for the dynamic range and noise levels of the measurement system. In case of electrical bioimpedance acquisition, the variations can be 1000 times smaller than the entire measured value. Synchronous or lock-in measurement of these variations is discussed in the current paper, and novel measurement solutions are presented. Proposed methods are simple and robust when compared to other applicable solutions. A common feature shared by all members of the group of the proposed solutions is differentiation. It is achieved by calculating the differences between synchronously acquired consecutive samples, with lock-in integration and analog differentiation. All these methods enable inherent separation of variations from the static component of the signal. The variable component of the bioimpedance can, thus, be acquired using the full available dynamic range of the apparatus for its detection. Additive disturbing signals and omnipresent wideband noise are considered and the method for their reduction is proposed. |
format | Online Article Text |
id | pubmed-7085632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70856322020-04-21 Methods for Detection of Bioimpedance Variations in Resource Constrained Environments Priidel, Eiko Annus, Paul Krivošei, Andrei Rist, Marek Land, Raul Min, Mart Märtens, Olev Sensors (Basel) Article Changes in a certain parameter are often a few magnitudes smaller than the base value of the parameter, specifying significant requirements for the dynamic range and noise levels of the measurement system. In case of electrical bioimpedance acquisition, the variations can be 1000 times smaller than the entire measured value. Synchronous or lock-in measurement of these variations is discussed in the current paper, and novel measurement solutions are presented. Proposed methods are simple and robust when compared to other applicable solutions. A common feature shared by all members of the group of the proposed solutions is differentiation. It is achieved by calculating the differences between synchronously acquired consecutive samples, with lock-in integration and analog differentiation. All these methods enable inherent separation of variations from the static component of the signal. The variable component of the bioimpedance can, thus, be acquired using the full available dynamic range of the apparatus for its detection. Additive disturbing signals and omnipresent wideband noise are considered and the method for their reduction is proposed. MDPI 2020-03-02 /pmc/articles/PMC7085632/ /pubmed/32131467 http://dx.doi.org/10.3390/s20051363 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Priidel, Eiko Annus, Paul Krivošei, Andrei Rist, Marek Land, Raul Min, Mart Märtens, Olev Methods for Detection of Bioimpedance Variations in Resource Constrained Environments |
title | Methods for Detection of Bioimpedance Variations in Resource Constrained Environments |
title_full | Methods for Detection of Bioimpedance Variations in Resource Constrained Environments |
title_fullStr | Methods for Detection of Bioimpedance Variations in Resource Constrained Environments |
title_full_unstemmed | Methods for Detection of Bioimpedance Variations in Resource Constrained Environments |
title_short | Methods for Detection of Bioimpedance Variations in Resource Constrained Environments |
title_sort | methods for detection of bioimpedance variations in resource constrained environments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085632/ https://www.ncbi.nlm.nih.gov/pubmed/32131467 http://dx.doi.org/10.3390/s20051363 |
work_keys_str_mv | AT priideleiko methodsfordetectionofbioimpedancevariationsinresourceconstrainedenvironments AT annuspaul methodsfordetectionofbioimpedancevariationsinresourceconstrainedenvironments AT krivoseiandrei methodsfordetectionofbioimpedancevariationsinresourceconstrainedenvironments AT ristmarek methodsfordetectionofbioimpedancevariationsinresourceconstrainedenvironments AT landraul methodsfordetectionofbioimpedancevariationsinresourceconstrainedenvironments AT minmart methodsfordetectionofbioimpedancevariationsinresourceconstrainedenvironments AT martensolev methodsfordetectionofbioimpedancevariationsinresourceconstrainedenvironments |