Cargando…
Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers
Premature babies are at high risk of serious neurodevelopmental disabilities, which in many cases are related to perinatal hypoxic–ischemic encephalopathy (HIE). Studies of neuroprotection in animal models consistently suggest that treatment must be started as early as possible in the first 6 h afte...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085637/ https://www.ncbi.nlm.nih.gov/pubmed/32150987 http://dx.doi.org/10.3390/s20051424 |
_version_ | 1783508977597808640 |
---|---|
author | Abbasi, Hamid Gunn, Alistair J. Bennet, Laura Unsworth, Charles P. |
author_facet | Abbasi, Hamid Gunn, Alistair J. Bennet, Laura Unsworth, Charles P. |
author_sort | Abbasi, Hamid |
collection | PubMed |
description | Premature babies are at high risk of serious neurodevelopmental disabilities, which in many cases are related to perinatal hypoxic–ischemic encephalopathy (HIE). Studies of neuroprotection in animal models consistently suggest that treatment must be started as early as possible in the first 6 h after hypoxia–ischemia (HI), the so-called latent phase before secondary deterioration, to improve outcomes. We have shown in preterm sheep that EEG biomarkers of injury, in the form of high-frequency micro-scale spike transients, develop and evolve in this critical latent phase after severe asphyxia. Real-time automatic identification of such events is important for the early and accurate detection of HI injury, so that the right treatment can be implemented at the right time. We have previously reported successful strategies for accurate identification of EEG patterns after HI. In this study, we report an alternative high-performance approach based on the fusion of spectral Fourier analysis and Type-I fuzzy classifiers (FFT-Type-I-FLC). We assessed its performance in over 2520 min of latent phase EEG recordings from seven asphyxiated in utero preterm fetal sheep exposed to a range of different occlusion periods. The FFT-Type-I-FLC classifier demonstrated 98.9 ± 1.0% accuracy for identification of high-frequency spike transients in the gamma frequency band (namely 80–120 Hz) post-HI. The spectral-based approach (FFT-Type-I-FLC classifier) has similar accuracy to our previous reverse biorthogonal wavelets rbio2.8 basis function and type-1 fuzzy classifier (rbio-WT-Type-1-FLC), providing competitive performance (within the margin of error: 0.89%), but it is computationally simpler and would be readily adapted to identify other potentially relevant EEG waveforms. |
format | Online Article Text |
id | pubmed-7085637 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70856372020-04-21 Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers Abbasi, Hamid Gunn, Alistair J. Bennet, Laura Unsworth, Charles P. Sensors (Basel) Article Premature babies are at high risk of serious neurodevelopmental disabilities, which in many cases are related to perinatal hypoxic–ischemic encephalopathy (HIE). Studies of neuroprotection in animal models consistently suggest that treatment must be started as early as possible in the first 6 h after hypoxia–ischemia (HI), the so-called latent phase before secondary deterioration, to improve outcomes. We have shown in preterm sheep that EEG biomarkers of injury, in the form of high-frequency micro-scale spike transients, develop and evolve in this critical latent phase after severe asphyxia. Real-time automatic identification of such events is important for the early and accurate detection of HI injury, so that the right treatment can be implemented at the right time. We have previously reported successful strategies for accurate identification of EEG patterns after HI. In this study, we report an alternative high-performance approach based on the fusion of spectral Fourier analysis and Type-I fuzzy classifiers (FFT-Type-I-FLC). We assessed its performance in over 2520 min of latent phase EEG recordings from seven asphyxiated in utero preterm fetal sheep exposed to a range of different occlusion periods. The FFT-Type-I-FLC classifier demonstrated 98.9 ± 1.0% accuracy for identification of high-frequency spike transients in the gamma frequency band (namely 80–120 Hz) post-HI. The spectral-based approach (FFT-Type-I-FLC classifier) has similar accuracy to our previous reverse biorthogonal wavelets rbio2.8 basis function and type-1 fuzzy classifier (rbio-WT-Type-1-FLC), providing competitive performance (within the margin of error: 0.89%), but it is computationally simpler and would be readily adapted to identify other potentially relevant EEG waveforms. MDPI 2020-03-05 /pmc/articles/PMC7085637/ /pubmed/32150987 http://dx.doi.org/10.3390/s20051424 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Abbasi, Hamid Gunn, Alistair J. Bennet, Laura Unsworth, Charles P. Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers |
title | Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers |
title_full | Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers |
title_fullStr | Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers |
title_full_unstemmed | Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers |
title_short | Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers |
title_sort | latent phase identification of high-frequency micro-scale gamma spike transients in the hypoxic ischemic eeg of preterm fetal sheep using spectral analysis and fuzzy classifiers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085637/ https://www.ncbi.nlm.nih.gov/pubmed/32150987 http://dx.doi.org/10.3390/s20051424 |
work_keys_str_mv | AT abbasihamid latentphaseidentificationofhighfrequencymicroscalegammaspiketransientsinthehypoxicischemiceegofpretermfetalsheepusingspectralanalysisandfuzzyclassifiers AT gunnalistairj latentphaseidentificationofhighfrequencymicroscalegammaspiketransientsinthehypoxicischemiceegofpretermfetalsheepusingspectralanalysisandfuzzyclassifiers AT bennetlaura latentphaseidentificationofhighfrequencymicroscalegammaspiketransientsinthehypoxicischemiceegofpretermfetalsheepusingspectralanalysisandfuzzyclassifiers AT unsworthcharlesp latentphaseidentificationofhighfrequencymicroscalegammaspiketransientsinthehypoxicischemiceegofpretermfetalsheepusingspectralanalysisandfuzzyclassifiers |