Cargando…

A Rail Fastener Tightness Detection Approach Using Multi-source Visual Sensor

At present, the method of two-dimensional image recognition is mainly used to detect the abnormal fastener in the rail-track inspection system. However, the too-tight-or-too-loose fastener condition may cause the clip of the fastener to break or loose due to the high frequency vibration shock, which...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Qiang, Wang, Shengchun, Fang, Yue, Wang, Le, Du, Xinyu, Li, Hailang, He, QiXin, Feng, Qibo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085639/
https://www.ncbi.nlm.nih.gov/pubmed/32131489
http://dx.doi.org/10.3390/s20051367
Descripción
Sumario:At present, the method of two-dimensional image recognition is mainly used to detect the abnormal fastener in the rail-track inspection system. However, the too-tight-or-too-loose fastener condition may cause the clip of the fastener to break or loose due to the high frequency vibration shock, which is difficult to detect from the two-dimensional image. In this practical application background, 3D visual detection technology provides a feasible solution. In this paper, we propose a fundamental multi-source visual data detection method, as well as an accurate and robust fastener location and nut or bolt segmentation algorithm. By combining two-dimensional intensity information and three-dimensional depth information generated by the projection of line structural light, the locating of nut or bolt position and accurate perception of height information can be realized in the dynamic running environment of railway. The experimental results show that the static measurement accuracy in the vertical direction using the structural light vision sensor is 0.1 mm under the laboratory condition, and the dynamic measurement accuracy is 0.5 mm under the dynamic train running environment. We use dynamic template matching algorithm to locate fasteners from 2D intensity map, which achieves 99.4% accuracy, then use the watershed algorithm to segment the nut and bolt from the corresponding depth image of located fastener. Finally, the 3D shape of the nut and bolt is analyzed to determine whether the nut or bolt height meets the local statistical threshold requirements, so as to detect the hidden danger of railway transportation caused by too loose or too tight fasteners.