Cargando…

Chaotic Image Encryption Using Hopfield and Hindmarsh–Rose Neurons Implemented on FPGA

Chaotic systems implemented by artificial neural networks are good candidates for data encryption. In this manner, this paper introduces the cryptographic application of the Hopfield and the Hindmarsh–Rose neurons. The contribution is focused on finding suitable coefficient values of the neurons to...

Descripción completa

Detalles Bibliográficos
Autores principales: Tlelo-Cuautle, Esteban, Díaz-Muñoz, Jonathan Daniel, González-Zapata, Astrid Maritza, Li, Rui, León-Salas, Walter Daniel, Fernández, Francisco V., Guillén-Fernández, Omar, Cruz-Vega, Israel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085708/
https://www.ncbi.nlm.nih.gov/pubmed/32121310
http://dx.doi.org/10.3390/s20051326
_version_ 1783508994684354560
author Tlelo-Cuautle, Esteban
Díaz-Muñoz, Jonathan Daniel
González-Zapata, Astrid Maritza
Li, Rui
León-Salas, Walter Daniel
Fernández, Francisco V.
Guillén-Fernández, Omar
Cruz-Vega, Israel
author_facet Tlelo-Cuautle, Esteban
Díaz-Muñoz, Jonathan Daniel
González-Zapata, Astrid Maritza
Li, Rui
León-Salas, Walter Daniel
Fernández, Francisco V.
Guillén-Fernández, Omar
Cruz-Vega, Israel
author_sort Tlelo-Cuautle, Esteban
collection PubMed
description Chaotic systems implemented by artificial neural networks are good candidates for data encryption. In this manner, this paper introduces the cryptographic application of the Hopfield and the Hindmarsh–Rose neurons. The contribution is focused on finding suitable coefficient values of the neurons to generate robust random binary sequences that can be used in image encryption. This task is performed by evaluating the bifurcation diagrams from which one chooses appropriate coefficient values of the mathematical models that produce high positive Lyapunov exponent and Kaplan–Yorke dimension values, which are computed using TISEAN. The randomness of both the Hopfield and the Hindmarsh–Rose neurons is evaluated from chaotic time series data by performing National Institute of Standard and Technology (NIST) tests. The implementation of both neurons is done using field-programmable gate arrays whose architectures are used to develop an encryption system for RGB images. The success of the encryption system is confirmed by performing correlation, histogram, variance, entropy, and Number of Pixel Change Rate (NPCR) tests.
format Online
Article
Text
id pubmed-7085708
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70857082020-04-21 Chaotic Image Encryption Using Hopfield and Hindmarsh–Rose Neurons Implemented on FPGA Tlelo-Cuautle, Esteban Díaz-Muñoz, Jonathan Daniel González-Zapata, Astrid Maritza Li, Rui León-Salas, Walter Daniel Fernández, Francisco V. Guillén-Fernández, Omar Cruz-Vega, Israel Sensors (Basel) Article Chaotic systems implemented by artificial neural networks are good candidates for data encryption. In this manner, this paper introduces the cryptographic application of the Hopfield and the Hindmarsh–Rose neurons. The contribution is focused on finding suitable coefficient values of the neurons to generate robust random binary sequences that can be used in image encryption. This task is performed by evaluating the bifurcation diagrams from which one chooses appropriate coefficient values of the mathematical models that produce high positive Lyapunov exponent and Kaplan–Yorke dimension values, which are computed using TISEAN. The randomness of both the Hopfield and the Hindmarsh–Rose neurons is evaluated from chaotic time series data by performing National Institute of Standard and Technology (NIST) tests. The implementation of both neurons is done using field-programmable gate arrays whose architectures are used to develop an encryption system for RGB images. The success of the encryption system is confirmed by performing correlation, histogram, variance, entropy, and Number of Pixel Change Rate (NPCR) tests. MDPI 2020-02-28 /pmc/articles/PMC7085708/ /pubmed/32121310 http://dx.doi.org/10.3390/s20051326 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tlelo-Cuautle, Esteban
Díaz-Muñoz, Jonathan Daniel
González-Zapata, Astrid Maritza
Li, Rui
León-Salas, Walter Daniel
Fernández, Francisco V.
Guillén-Fernández, Omar
Cruz-Vega, Israel
Chaotic Image Encryption Using Hopfield and Hindmarsh–Rose Neurons Implemented on FPGA
title Chaotic Image Encryption Using Hopfield and Hindmarsh–Rose Neurons Implemented on FPGA
title_full Chaotic Image Encryption Using Hopfield and Hindmarsh–Rose Neurons Implemented on FPGA
title_fullStr Chaotic Image Encryption Using Hopfield and Hindmarsh–Rose Neurons Implemented on FPGA
title_full_unstemmed Chaotic Image Encryption Using Hopfield and Hindmarsh–Rose Neurons Implemented on FPGA
title_short Chaotic Image Encryption Using Hopfield and Hindmarsh–Rose Neurons Implemented on FPGA
title_sort chaotic image encryption using hopfield and hindmarsh–rose neurons implemented on fpga
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085708/
https://www.ncbi.nlm.nih.gov/pubmed/32121310
http://dx.doi.org/10.3390/s20051326
work_keys_str_mv AT tlelocuautleesteban chaoticimageencryptionusinghopfieldandhindmarshroseneuronsimplementedonfpga
AT diazmunozjonathandaniel chaoticimageencryptionusinghopfieldandhindmarshroseneuronsimplementedonfpga
AT gonzalezzapataastridmaritza chaoticimageencryptionusinghopfieldandhindmarshroseneuronsimplementedonfpga
AT lirui chaoticimageencryptionusinghopfieldandhindmarshroseneuronsimplementedonfpga
AT leonsalaswalterdaniel chaoticimageencryptionusinghopfieldandhindmarshroseneuronsimplementedonfpga
AT fernandezfranciscov chaoticimageencryptionusinghopfieldandhindmarshroseneuronsimplementedonfpga
AT guillenfernandezomar chaoticimageencryptionusinghopfieldandhindmarshroseneuronsimplementedonfpga
AT cruzvegaisrael chaoticimageencryptionusinghopfieldandhindmarshroseneuronsimplementedonfpga