Cargando…

Outage Analysis of Parasitic Ambient Backscatter Communication in Decode-and-Forward Relay Networks with SWIPT

In this paper, we investigate the outage performance of simultaneous wireless information and power transfer (SWIPT) based Decode-and-Forward (DF) relay networks, where the relay needs to simultaneously forward information for two relaying links, primary relaying link and parasitic relaying link. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Tuo, Yanhong, Zhang, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085717/
https://www.ncbi.nlm.nih.gov/pubmed/32110971
http://dx.doi.org/10.3390/s20051273
Descripción
Sumario:In this paper, we investigate the outage performance of simultaneous wireless information and power transfer (SWIPT) based Decode-and-Forward (DF) relay networks, where the relay needs to simultaneously forward information for two relaying links, primary relaying link and parasitic relaying link. The primary relaying link is the traditional source-relay-destination relay system. While in the parasitic relaying link, the parasitic source, i.e., Internet-of-Things (IoT) tag, is not connected to the stable power source and thus has to backscatter the signals from the primary source to convey its information. The relay not only harvests energy from Radio Frequency (RF) signals from both sources but also forwards messages to their corresponding destinations. The primary source and destination are unaware of the parasitic backscatter transmission, but the relay and parasitic destination can employ successive interference cancellation (SIC) detector to eliminate the interference from the primary link and detect the message from the parasitic source. In order to investigate the interplay between the primary and parasitic relaying links, the outage probabilities of both relaying links are derived. Besides, the effects of system parameters, i.e., power splitting coefficient, forwarding power allocation coefficient and backscatter reflection coefficient, on the system performance are discussed. Simulation results verify our theoretical analysis. In the meanwhile, it is revealed that the advised relaying system has far larger sum throughput than the one with only primary relaying link and the parasitic relaying link can gain considerable throughput at the cost of negligible degradation of primary throughput.