Cargando…
Semantically Guided Large Deformation Estimation with Deep Networks
Deformable image registration is still a challenge when the considered images have strong variations in appearance and large initial misalignment. A huge performance gap currently remains for fast-moving regions in videos or strong deformations of natural objects. We present a new semantically guide...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085718/ https://www.ncbi.nlm.nih.gov/pubmed/32143297 http://dx.doi.org/10.3390/s20051392 |
Sumario: | Deformable image registration is still a challenge when the considered images have strong variations in appearance and large initial misalignment. A huge performance gap currently remains for fast-moving regions in videos or strong deformations of natural objects. We present a new semantically guided and two-step deep deformation network that is particularly well suited for the estimation of large deformations. We combine a U-Net architecture that is weakly supervised with segmentation information to extract semantically meaningful features with multiple stages of nonrigid spatial transformer networks parameterized with low-dimensional B-spline deformations. Combining alignment loss and semantic loss functions together with a regularization penalty to obtain smooth and plausible deformations, we achieve superior results in terms of alignment quality compared to previous approaches that have only considered a label-driven alignment loss. Our network model advances the state of the art for inter-subject face part alignment and motion tracking in medical cardiac magnetic resonance imaging (MRI) sequences in comparison to the FlowNet and Label-Reg, two recent deep-learning registration frameworks. The models are compact, very fast in inference, and demonstrate clear potential for a variety of challenging tracking and/or alignment tasks in computer vision and medical image analysis. |
---|