Cargando…

A Solar Altitude Angle Model for Efficient Solar Energy Predictions

Sunlight is one of the most frequently used ambient energy sources for energy harvesting in wireless sensor networks. Although virtually unlimited, solar radiation experiences significant variations depending on the weather, the season, and the time of day, so solar-powered nodes commonly employ sol...

Descripción completa

Detalles Bibliográficos
Autores principales: Herrería-Alonso, Sergio, Suárez-González, Andrés, Rodríguez-Pérez, Miguel, Rodríguez-Rubio, Raúl F., López-García, Cándido
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085731/
https://www.ncbi.nlm.nih.gov/pubmed/32143294
http://dx.doi.org/10.3390/s20051391
_version_ 1783509000129609728
author Herrería-Alonso, Sergio
Suárez-González, Andrés
Rodríguez-Pérez, Miguel
Rodríguez-Rubio, Raúl F.
López-García, Cándido
author_facet Herrería-Alonso, Sergio
Suárez-González, Andrés
Rodríguez-Pérez, Miguel
Rodríguez-Rubio, Raúl F.
López-García, Cándido
author_sort Herrería-Alonso, Sergio
collection PubMed
description Sunlight is one of the most frequently used ambient energy sources for energy harvesting in wireless sensor networks. Although virtually unlimited, solar radiation experiences significant variations depending on the weather, the season, and the time of day, so solar-powered nodes commonly employ solar prediction models to effectively adapt their energy demands to harvesting dynamics. We present in this paper a novel energy prediction model that makes use of the altitude angle of the sun at different times of day to predict future solar energy availability. Unlike most of the state-of-the-art predictors that use past energy observations to make predictions, our model does not require one to maintain local energy harvesting patterns of past days. Performance evaluation shows that our scheme is able to provide accurate predictions for arbitrary forecasting horizons by performing just a few low complexity operations. Moreover, our proposal is extremely simple to set up since it does not require any particular tuning for each different scenario or location.
format Online
Article
Text
id pubmed-7085731
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-70857312020-03-25 A Solar Altitude Angle Model for Efficient Solar Energy Predictions Herrería-Alonso, Sergio Suárez-González, Andrés Rodríguez-Pérez, Miguel Rodríguez-Rubio, Raúl F. López-García, Cándido Sensors (Basel) Article Sunlight is one of the most frequently used ambient energy sources for energy harvesting in wireless sensor networks. Although virtually unlimited, solar radiation experiences significant variations depending on the weather, the season, and the time of day, so solar-powered nodes commonly employ solar prediction models to effectively adapt their energy demands to harvesting dynamics. We present in this paper a novel energy prediction model that makes use of the altitude angle of the sun at different times of day to predict future solar energy availability. Unlike most of the state-of-the-art predictors that use past energy observations to make predictions, our model does not require one to maintain local energy harvesting patterns of past days. Performance evaluation shows that our scheme is able to provide accurate predictions for arbitrary forecasting horizons by performing just a few low complexity operations. Moreover, our proposal is extremely simple to set up since it does not require any particular tuning for each different scenario or location. MDPI 2020-03-04 /pmc/articles/PMC7085731/ /pubmed/32143294 http://dx.doi.org/10.3390/s20051391 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Herrería-Alonso, Sergio
Suárez-González, Andrés
Rodríguez-Pérez, Miguel
Rodríguez-Rubio, Raúl F.
López-García, Cándido
A Solar Altitude Angle Model for Efficient Solar Energy Predictions
title A Solar Altitude Angle Model for Efficient Solar Energy Predictions
title_full A Solar Altitude Angle Model for Efficient Solar Energy Predictions
title_fullStr A Solar Altitude Angle Model for Efficient Solar Energy Predictions
title_full_unstemmed A Solar Altitude Angle Model for Efficient Solar Energy Predictions
title_short A Solar Altitude Angle Model for Efficient Solar Energy Predictions
title_sort solar altitude angle model for efficient solar energy predictions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085731/
https://www.ncbi.nlm.nih.gov/pubmed/32143294
http://dx.doi.org/10.3390/s20051391
work_keys_str_mv AT herreriaalonsosergio asolaraltitudeanglemodelforefficientsolarenergypredictions
AT suarezgonzalezandres asolaraltitudeanglemodelforefficientsolarenergypredictions
AT rodriguezperezmiguel asolaraltitudeanglemodelforefficientsolarenergypredictions
AT rodriguezrubioraulf asolaraltitudeanglemodelforefficientsolarenergypredictions
AT lopezgarciacandido asolaraltitudeanglemodelforefficientsolarenergypredictions
AT herreriaalonsosergio solaraltitudeanglemodelforefficientsolarenergypredictions
AT suarezgonzalezandres solaraltitudeanglemodelforefficientsolarenergypredictions
AT rodriguezperezmiguel solaraltitudeanglemodelforefficientsolarenergypredictions
AT rodriguezrubioraulf solaraltitudeanglemodelforefficientsolarenergypredictions
AT lopezgarciacandido solaraltitudeanglemodelforefficientsolarenergypredictions