Cargando…
A Study on the Application of Convolutional Neural Networks to Fall Detection Evaluated with Multiple Public Datasets
Due to the repercussion of falls on both the health and self-sufficiency of older people and on the financial sustainability of healthcare systems, the study of wearable fall detection systems (FDSs) has gained much attention during the last years. The core of a FDS is the algorithm that discriminat...
Autores principales: | Casilari, Eduardo, Lora-Rivera, Raúl, García-Lagos, Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085732/ https://www.ncbi.nlm.nih.gov/pubmed/32155936 http://dx.doi.org/10.3390/s20051466 |
Ejemplares similares
-
Analysis of Public Datasets for Wearable Fall Detection Systems
por: Casilari, Eduardo, et al.
Publicado: (2017) -
Fall Detection Using Multiple Bioradars and Convolutional Neural Networks
por: Anishchenko, Lesya, et al.
Publicado: (2019) -
Consumption Analysis of Smartphone based Fall Detection Systems with Multiple External Wireless Sensors
por: González-Cañete, Francisco Javier, et al.
Publicado: (2020) -
Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection
por: Casilari, Eduardo, et al.
Publicado: (2016) -
A Feasibility Study of the Use of Smartwatches in Wearable Fall Detection Systems
por: González-Cañete, Francisco Javier, et al.
Publicado: (2021)