Cargando…

Radiation Angle Estimation and High-Precision Pedestrian Positioning by Tracking Change of Channel State Information†

P2V (pedestrian-to-vehicle) communication, in which a pedestrian’s mobile device notifies its position to nearby vehicles in order to prevent pedestrian accidents, has attracted much research interest recently, but its performance largely depends on the precision of pedestrians’ positioning. Pedestr...

Descripción completa

Detalles Bibliográficos
Autores principales: Komamiya, Wataru, Tang, Suhua, Obana, Sadao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085733/
https://www.ncbi.nlm.nih.gov/pubmed/32151112
http://dx.doi.org/10.3390/s20051430
Descripción
Sumario:P2V (pedestrian-to-vehicle) communication, in which a pedestrian’s mobile device notifies its position to nearby vehicles in order to prevent pedestrian accidents, has attracted much research interest recently, but its performance largely depends on the precision of pedestrians’ positioning. Pedestrian positioning is generally performed by using GPS (Global Positioning System), and its precision may greatly degrade in urban canyons. To improve positioning precision of pedestrians, it was proposed that vehicles around pedestrians be used as anchors beside satellites. In this method, a pedestrian device overhears V2V (vehicle-to-vehicle) communication signals which carry the vehicle position and calculates a pedestrian’s position using pedestrian–vehicle distance/angle information estimated from CSI (channel state information) of the V2V signals. However, angle estimation typically depends on the number of antennas of the pedestrian device. In this paper, we propose a new method to estimate signal radiation angle by tracking temporal change of CSI caused by vehicle movement during signal transmission and investigate its application to precise pedestrian positioning. Three-dimensional ray tracing simulations confirm that compared to the base method using eight antennas, the proposed method with a single antenna reduces average angle error from 13 degrees to 3.9 degrees, and reduces average positioning error from 2.49 m to 0.78 m.