Cargando…
Non-Local SVD Denoising of MRI Based on Sparse Representations
Magnetic Resonance (MR) Imaging is a diagnostic technique that produces noisy images, which must be filtered before processing to prevent diagnostic errors. However, filtering the noise while keeping fine details is a difficult task. This paper presents a method, based on sparse representations and...
Autores principales: | Leal, Nallig, Zurek, Eduardo, Leal, Esmeide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085762/ https://www.ncbi.nlm.nih.gov/pubmed/32164373 http://dx.doi.org/10.3390/s20051536 |
Ejemplares similares
-
A Saliency-Based Sparse Representation Method for Point Cloud Simplification
por: Leal, Esmeide, et al.
Publicado: (2021) -
Sparse Regularization-Based Approach for Point Cloud Denoising and Sharp Features Enhancement
por: Leal, Esmeide, et al.
Publicado: (2020) -
Despeckling of Ultrasound Images Using Block Matching and SVD in Sparse Representation
por: Reyes-Reyes, Rogelio, et al.
Publicado: (2022) -
Utilizing SVD and VMD for Denoising Non-Stationary Signals of Roller Bearings
por: Wang, Qinghua, et al.
Publicado: (2021) -
Chaotic signal denoising based on energy selection TQWT and adaptive SVD
por: Yang, Xinlu, et al.
Publicado: (2023)