Cargando…
Machine Learning-Based Gully Erosion Susceptibility Mapping: A Case Study of Eastern India
Gully erosion is a form of natural disaster and one of the land loss mechanisms causing severe problems worldwide. This study aims to delineate the areas with the most severe gully erosion susceptibility (GES) using the machine learning techniques Random Forest (RF), Gradient Boosted Regression Tree...
Autores principales: | Saha, Sunil, Roy, Jagabandhu, Arabameri, Alireza, Blaschke, Thomas, Tien Bui, Dieu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085763/ https://www.ncbi.nlm.nih.gov/pubmed/32121238 http://dx.doi.org/10.3390/s20051313 |
Ejemplares similares
-
Evaluation of Recent Advanced Soft Computing Techniques for Gully Erosion Susceptibility Mapping: A Comparative Study
por: Arabameri, Alireza, et al.
Publicado: (2020) -
Credal decision tree based novel ensemble models for spatial assessment of gully erosion and sustainable management
por: Arabameri, Alireza, et al.
Publicado: (2021) -
A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran)
por: Tien Bui, Dieu, et al.
Publicado: (2019) -
Mapping wind erosion hazard with regression-based machine learning algorithms
por: Gholami, Hamid, et al.
Publicado: (2020) -
Gully erosion prediction method from geoenvironmental data and supervised machine learning techniques
por: Lana, Julio Cesar
Publicado: (2023)