Cargando…
Malicious Network Traffic Detection Based on Deep Neural Networks and Association Analysis
Anomaly detection systems can accurately identify malicious network traffic, providing network security. With the development of internet technology, network attacks are becoming more and more sourced and complicated, making it difficult for traditional anomaly detection systems to effectively analy...
Autores principales: | Gao, Minghui, Ma, Li, Liu, Heng, Zhang, Zhijun, Ning, Zhiyan, Xu, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085765/ https://www.ncbi.nlm.nih.gov/pubmed/32155834 http://dx.doi.org/10.3390/s20051452 |
Ejemplares similares
-
Malicious traffic detection combined deep neural network with hierarchical attention mechanism
por: Liu, Xiaoyang, et al.
Publicado: (2021) -
Malicious traffic detection on sampled network flow data with novelty-detection-based models
por: Campazas-Vega, Adrián, et al.
Publicado: (2023) -
Classification of Normal and Malicious Traffic Based on an Ensemble of Machine Learning for a Vehicle CAN-Network
por: Alalwany, Easa, et al.
Publicado: (2022) -
A Framework for Malicious Traffic Detection in IoT Healthcare Environment
por: Hussain, Faisal, et al.
Publicado: (2021) -
Graph neural networks and cross-protocol analysis for detecting malicious IP addresses
por: Huang, Yonghong, et al.
Publicado: (2022)