Cargando…
Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO(2)/ZnO Piezoelectric Structure
The propagation of surface acoustic waves (SAWs) along a ZnO/SiO(2)/Si piezoelectric structure is experimentally and theoretically studied. Six surface acoustic modes were experimentally detected in the 134 to 570 MHz frequency range, for acoustic wavelength λ = 30 μm, and for SiO(2) and ZnO layers...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085766/ https://www.ncbi.nlm.nih.gov/pubmed/32138294 http://dx.doi.org/10.3390/s20051380 |
_version_ | 1783509008154361856 |
---|---|
author | Caliendo, Cinzia Laidoudi, Farouk |
author_facet | Caliendo, Cinzia Laidoudi, Farouk |
author_sort | Caliendo, Cinzia |
collection | PubMed |
description | The propagation of surface acoustic waves (SAWs) along a ZnO/SiO(2)/Si piezoelectric structure is experimentally and theoretically studied. Six surface acoustic modes were experimentally detected in the 134 to 570 MHz frequency range, for acoustic wavelength λ = 30 μm, and for SiO(2) and ZnO layers with a thickness of 1 and 2.4 μm. The numerical and three-dimensional (3D) finite element method analysis revealed that the multilayered substrate supports the propagation of Rayleigh and Sezawa modes (R(m) and S(m)), their third and fifth harmonics at λ/3 and λ/5. The velocity of all the modes was found in good agreement with the theoretically predicted values. Eigenfrequency, frequency domain, and time domain studies were performed to calculate the velocity, the electroacoustic coupling coefficient, the shape of the modes, the propagation loss, and the scattering parameter S(21) of the SAW delay lines based on the propagation of these modes. The sensitivity to five different gases (dichloromethane, trichloromethane, carbontetrachloride, tetrachloroethylene, and trichloroethylene) was calculated under the hypothesis that the ZnO surface is covered by a polyisobutylene (PIB) layer 0.8 µm thick. The results show that the modes resonating at different frequencies exhibit different sensitivities toward the same gas. The multi-frequency ZnO/SiO(2)/Si single device structure is a promising solution for the development of a multiparameters sensing platform; multiple excitation frequencies with different sensing properties can allow the parallel analysis of the same gas with improved accuracy. |
format | Online Article Text |
id | pubmed-7085766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-70857662020-03-25 Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO(2)/ZnO Piezoelectric Structure Caliendo, Cinzia Laidoudi, Farouk Sensors (Basel) Article The propagation of surface acoustic waves (SAWs) along a ZnO/SiO(2)/Si piezoelectric structure is experimentally and theoretically studied. Six surface acoustic modes were experimentally detected in the 134 to 570 MHz frequency range, for acoustic wavelength λ = 30 μm, and for SiO(2) and ZnO layers with a thickness of 1 and 2.4 μm. The numerical and three-dimensional (3D) finite element method analysis revealed that the multilayered substrate supports the propagation of Rayleigh and Sezawa modes (R(m) and S(m)), their third and fifth harmonics at λ/3 and λ/5. The velocity of all the modes was found in good agreement with the theoretically predicted values. Eigenfrequency, frequency domain, and time domain studies were performed to calculate the velocity, the electroacoustic coupling coefficient, the shape of the modes, the propagation loss, and the scattering parameter S(21) of the SAW delay lines based on the propagation of these modes. The sensitivity to five different gases (dichloromethane, trichloromethane, carbontetrachloride, tetrachloroethylene, and trichloroethylene) was calculated under the hypothesis that the ZnO surface is covered by a polyisobutylene (PIB) layer 0.8 µm thick. The results show that the modes resonating at different frequencies exhibit different sensitivities toward the same gas. The multi-frequency ZnO/SiO(2)/Si single device structure is a promising solution for the development of a multiparameters sensing platform; multiple excitation frequencies with different sensing properties can allow the parallel analysis of the same gas with improved accuracy. MDPI 2020-03-03 /pmc/articles/PMC7085766/ /pubmed/32138294 http://dx.doi.org/10.3390/s20051380 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Caliendo, Cinzia Laidoudi, Farouk Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO(2)/ZnO Piezoelectric Structure |
title | Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO(2)/ZnO Piezoelectric Structure |
title_full | Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO(2)/ZnO Piezoelectric Structure |
title_fullStr | Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO(2)/ZnO Piezoelectric Structure |
title_full_unstemmed | Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO(2)/ZnO Piezoelectric Structure |
title_short | Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO(2)/ZnO Piezoelectric Structure |
title_sort | experimental and theoretical study of multifrequency surface acoustic wave devices in a single si/sio(2)/zno piezoelectric structure |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085766/ https://www.ncbi.nlm.nih.gov/pubmed/32138294 http://dx.doi.org/10.3390/s20051380 |
work_keys_str_mv | AT caliendocinzia experimentalandtheoreticalstudyofmultifrequencysurfaceacousticwavedevicesinasinglesisio2znopiezoelectricstructure AT laidoudifarouk experimentalandtheoreticalstudyofmultifrequencysurfaceacousticwavedevicesinasinglesisio2znopiezoelectricstructure |