Cargando…
A Camera Sensors-Based System to Study Drug Effects on In Vitro Motility: The Case of PC-3 Prostate Cancer Cells
Cell motility is the brilliant result of cell status and its interaction with close environments. Its detection is now possible, thanks to the synergy of high-resolution camera sensors, time-lapse microscopy devices, and dedicated software tools for video and data analysis. In this scenario, we form...
Autores principales: | Comes, Maria Colomba, Mencattini, Arianna, Di Giuseppe, Davide, Filippi, Joanna, D’Orazio, Michele, Casti, Paola, Corsi, Francesca, Ghibelli, Lina, Di Natale, Corrado, Martinelli, Eugenio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085768/ https://www.ncbi.nlm.nih.gov/pubmed/32164292 http://dx.doi.org/10.3390/s20051531 |
Ejemplares similares
-
Deciphering Cancer Cell Behavior From Motility and Shape Features: Peer Prediction and Dynamic Selection to Support Cancer Diagnosis and Therapy
por: D'Orazio, Michele, et al.
Publicado: (2020) -
NeuriTES. Monitoring neurite changes through transfer entropy and semantic segmentation in bright-field time-lapse microscopy
por: Mencattini, Arianna, et al.
Publicado: (2021) -
Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network
por: Comes, Maria Colomba, et al.
Publicado: (2020) -
Deep-Manager: a versatile tool for optimal feature selection in live-cell imaging analysis
por: Mencattini, A., et al.
Publicado: (2023) -
Machine learning phenomics (MLP) combining deep learning with time-lapse-microscopy for monitoring colorectal adenocarcinoma cells gene expression and drug-response
por: D’Orazio, M., et al.
Publicado: (2022)