Cargando…
Hybrid Deep Learning Predictor for Smart Agriculture Sensing Based on Empirical Mode Decomposition and Gated Recurrent Unit Group Model
Smart agricultural sensing has enabled great advantages in practical applications recently, making it one of the most important and valuable systems. For outdoor plantation farms, the prediction of climate data, such as temperature, wind speed, and humidity, enables the planning and control of agric...
Autores principales: | Jin, Xue-Bo, Yang, Nian-Xiang, Wang, Xiao-Yi, Bai, Yu-Ting, Su, Ting-Li, Kong, Jian-Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085784/ https://www.ncbi.nlm.nih.gov/pubmed/32121411 http://dx.doi.org/10.3390/s20051334 |
Ejemplares similares
-
Using Complementary Ensemble Empirical Mode Decomposition and Gated Recurrent Unit to Predict Landslide Displacements in Dam Reservoir
por: Yang, Beibei, et al.
Publicado: (2022) -
Eliminating Phase Drift for Distributed Optical Fiber Acoustic Sensing System with Empirical Mode Decomposition
por: Lv, Yuejuan, et al.
Publicado: (2019) -
Empirical mode decomposition with missing values
por: Kim, Donghoh, et al.
Publicado: (2016) -
A hybrid model for tuberculosis forecasting based on empirical mode decomposition in China
por: Zhao, Ruiqing, et al.
Publicado: (2023) -
A Hybrid Model for Coronavirus Disease 2019 Forecasting Based on Ensemble Empirical Mode Decomposition and Deep Learning
por: Liu, Shidi, et al.
Publicado: (2022)