Cargando…

Matched Field Processing Based on Bayesian Estimation

In order to improve the robustness and positioning accuracy of the matched field processing (MFP) in underwater acoustic systems, we propose a conditional probability constraint matched field processing (MFP-CPC) algorithm in this paper, which protects the main-lobe and suppresses the side-lobe to t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Guolei, Wang, Yingmin, Wang, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085796/
https://www.ncbi.nlm.nih.gov/pubmed/32131533
http://dx.doi.org/10.3390/s20051374
Descripción
Sumario:In order to improve the robustness and positioning accuracy of the matched field processing (MFP) in underwater acoustic systems, we propose a conditional probability constraint matched field processing (MFP-CPC) algorithm in this paper, which protects the main-lobe and suppresses the side-lobe to the AMFP by the constraint parameters, such as the posterior probability density of source locations obtained by Bayesian criterion under the assumption of white Gaussian noise. Under such constraint, the proposed MFP-CPC algorithm not only has the same merit of a high resolution as AMFP but also improves the robustness. To evaluate the algorithm, the simulated and experimental data in an uncertain shallow ocean environment is used. From the results, MFP-CPC is robust to the moored source, as well as the moving source. In addition, the localization and tracking performances of using the proposed algorithm are consistent with the trajectory of the moving source.