Cargando…
Federated Reinforcement Learning for Training Control Policies on Multiple IoT Devices
Reinforcement learning has recently been studied in various fields and also used to optimally control IoT devices supporting the expansion of Internet connection beyond the usual standard devices. In this paper, we try to allow multiple reinforcement learning agents to learn optimal control policy o...
Autores principales: | Lim, Hyun-Kyo, Kim, Ju-Bong, Heo, Joo-Seong, Han, Youn-Hee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085801/ https://www.ncbi.nlm.nih.gov/pubmed/32121671 http://dx.doi.org/10.3390/s20051359 |
Ejemplares similares
-
Privacy Policies of IoT Devices: Collection and Analysis
por: Kuznetsov, Mikhail, et al.
Publicado: (2022) -
Dynamic Data Streams for Time-Critical IoT Systems in Energy-Aware IoT Devices Using Reinforcement Learning
por: Habeeb, Fawzy, et al.
Publicado: (2022) -
Compound Context-Aware Bayesian Inference Scheme for Smart IoT Environment
por: Ullah, Ihsan, et al.
Publicado: (2022) -
Sazgar IoT: A Device-Centric IoT Framework and Approximation Technique for Efficient and Scalable IoT Data Processing
por: Yavari, Ali, et al.
Publicado: (2023) -
Securing IoT Devices at CERN
por: Agarwal, Sharad
Publicado: (2018)