Cargando…
Spatiotemporal Approaches for Quality Control and Error Correction of Atmospheric Data through Machine Learning
We propose three quality control (QC) techniques using machine learning that depend on the type of input data used for training. These include QC based on time series of a single weather element, QC based on time series in conjunction with other weather elements, and QC using spatiotemporal characte...
Autores principales: | Kim, Hye-Jin, Park, Sung Min, Choi, Byung Jin, Moon, Seung-Hyun, Kim, Yong-Hyuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086422/ https://www.ncbi.nlm.nih.gov/pubmed/32256552 http://dx.doi.org/10.1155/2020/7980434 |
Ejemplares similares
-
Improved Correction of Atmospheric Pressure Data Obtained by Smartphones through Machine Learning
por: Kim, Yong-Hyuk, et al.
Publicado: (2016) -
The Association between the Frequency of Rhegmatogenous Retinal Detachment and Atmospheric Temperature
por: Kim, Dong Yoon, et al.
Publicado: (2020) -
Brain metastasis detection using machine learning: a systematic review and meta-analysis
por: Cho, Se Jin, et al.
Publicado: (2020) -
Correction to: Uncovering spatiotemporal patterns of atrophy in progressive supranuclear palsy using unsupervised machine learning
Publicado: (2023) -
Machine learning approach for prediction of hearing preservation in vestibular schwannoma surgery
por: Cha, Dongchul, et al.
Publicado: (2020)