Cargando…

Papain-like proteinase of turnip yellow mosaic virus: a prototype of a new viral proteinase group

Sequence comparisons predicted a potential papain-like proteinase domain in the N-terminal cleavage product (NRP) of the large nonstructural replicase polyprotein (RP) of turnip yellow mosaic virus (TYMV). Replacement of the predicted catalytic amino acids, Cys-783 by Ser, or of His-869 by Glu, abol...

Descripción completa

Detalles Bibliográficos
Autores principales: Rozanov, M. N., Drugeon, G., Haenni, A. -L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer-Verlag 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086826/
https://www.ncbi.nlm.nih.gov/pubmed/7710355
http://dx.doi.org/10.1007/BF01309862
Descripción
Sumario:Sequence comparisons predicted a potential papain-like proteinase domain in the N-terminal cleavage product (NRP) of the large nonstructural replicase polyprotein (RP) of turnip yellow mosaic virus (TYMV). Replacement of the predicted catalytic amino acids, Cys-783 by Ser, or of His-869 by Glu, abolished cleavage of the 206K RP into a ∼150K NRP and a ∼78K C-terminal product in reticulocyte lysates, while other substitutions exerted no apparent influence on proteolysis. The proteinase-deficient mutant RPs could not be cleaved in trans by as much as an eight-fold molar excess of wild-type proteinase. Deletion experiments have excluded the possible influence on autoproteolysis of amino acid sequences 1–708 and 982–1204 flanking the proteinase domain. Thus, the proteinase of TYMV with a papain-like dyad of essential amino acids has been mapped just upstream from the putative NTPase domain. Statistically significant sequence similarities with the TYMV proteinase were found for the similarly located domains of the replicase polyproteins of carlaviruses, capilloviruses, apple stem pitting virus and apple chlorotic leaf spot virus as well as for those of other tymoviruses and for the domain located downstream from the putative NTPase domain of the large polyprotein of beet necrotic yellow vein furovirus. All these domains are not significantly similar to other known proteinases, although they conserve papain-like Cys- and His-containing motifs. Thus these domains constitute a compact group of related enzymes, the tymo-like proteinases, within the proposedpapainlike proteinase supergroup. The resulting alignment of 10 tymo-like proteinase sequences has revealed a third highly conserved residue — Gly (Gly821 in TYMV RP) followed by a hydrophobic residue. We speculate that all the tymo-like proteinase domains of the viral replicative proteins may share common biochemical and biological features.